Skip to main content
Log in

Abstract

Polypropylene (PP) blended with rubber particles has been recognized for significantly increasing impact resistance, which is increasingly demanded in industries such as electric vehicles and consumer electronics. However, a comprehensive understanding of the toughening mechanisms underlying these lightweight impact-resistant materials is imperative for future research. This article provides a detailed review of the ductile-to-brittle (DB) transition behavior and the improvements in impact resistance observed in rubber-toughened PP blends. Firstly, the fracture behavior of homogeneous PP is summarized across different strain rates and temperatures, including the DB transition and yielding and crazing criteria. Furthermore, the influence of notches and defects on the DB transition is discussed extensively. Subsequently, the article examines the theoretical and practical aspects of the toughening mechanisms facilitated by the rubber phase in PP-rubber blends. The percolation model is used to investigate the inter-distance criterion between neighboring rubber particles and the impact of particle size and content on toughening behavior. The primary objective of this article is to enhance the understanding of the toughening behavior exhibited by PP and rubber blends. Additionally, this study aims to provide valuable insights for developing advanced lightweight materials using PP-based blends for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Jang, B. Z., Uhlmann, D. R., & Sande, J. B. V. (1984). Ductile–brittle transition in polymers. Journal of Applied Polymer Science, 29, 3409–3420.

    Article  Google Scholar 

  2. Jang, B. Z., Uhlmann, D. R., & Sande, J. B. V. (1985). The rubber particle size dependence of crazing in polypropylene. Polymer Engineering and Science, 25, 643–651.

    Article  Google Scholar 

  3. Ramsteiner, F. (1979). Structural changes during the deformation of thermoplastics in relation to impact resistance. Polymer, 20, 839–842.

    Article  Google Scholar 

  4. Dasari, A., & Misra, R. D. K. (2003). On the strain rate sensitivity of high density polyethylene and polypropylenes. Materials Science and Engineering: A, 358, 356–371.

    Article  Google Scholar 

  5. Dasari, A., Rohrmann, J., & Misra, R. D. K. (2003). Microstructural evolution during tensile deformation of polypropylenes. Materials Science and Engineering: A, 351, 200–213.

    Article  Google Scholar 

  6. Vincent, P. I. (1960). The tough-brittle transition in thermoplastics. Polymer, 1, 425–444.

    Article  Google Scholar 

  7. Vincent, P. I. (1964). Yield stress and brittle strength. Plastics, 29, 79.

    Google Scholar 

  8. Ward, I. M., & Sweeney, J. (2012). Mechanical properties of solid polymers (3rd ed.). London: Wiley.

    Book  Google Scholar 

  9. An, J., Kim, C., Choi, B.-H., & Lee, J.-M. (2014). Characterization of acrylonitrile–butadiene–styrene (ABS) copolymer blends with foreign polymers using fracture mechanism maps. Polymer Engineering and Science, 54, 2791–2798.

    Article  Google Scholar 

  10. Ludwik, P. (1927). Die Bedeutung des Gleit- und Reißwiderstandes für die Werkstoffprüfung. Z. des Verein. deutscher Ingenieure, 71, 1532–1538.

  11. Davidenkov, N. N., & Wittman, F. (1937). Physical Technical Institute (USSR), 4, 300.

    Google Scholar 

  12. Orowan, E. (1949). Fracture and strength of solids. Reports on Progress in Physics, 12, 185–232.

    Article  Google Scholar 

  13. Vincent, P. I. (1961). The effect of temperature. Plastics, 26, 141–143.

    Google Scholar 

  14. Matsushige, K., Radcliffe, S. V., & Baer, E. (1976). The pressure and temperature effects on brittle-to-ductile transition in PS and PMMA. Journal of Applied Polymer Science, 20, 1853–1866.

    Article  Google Scholar 

  15. Robertson, R. E. (1963). On the cold-drawing of plastics. Journal of Applied Polymer Science, 7, 443–450.

    Article  Google Scholar 

  16. Roetling, J. A. (1965). Yield stress behaviour of poly(ethyl methacrylate) in the glass transition region. Polymer, 6, 615–619.

    Article  Google Scholar 

  17. Roetling, J. A. (1966). Yield stress behaviour of isotactic polypropylene. Polymer, 7, 303–306.

    Article  Google Scholar 

  18. Lazurkin, J. S. (1958). Cold-drawing of glass-like and crystalline polymers. Journal of Polymer Science, 30, 595–604.

    Article  Google Scholar 

  19. Wu, T., Cao, Y., Yang, F., & Xiang, M. (2014). Investigation on double yielding behavior under tensile loading in isotactic polypropylene. Materials and Design, 60, 153–163.

    Article  Google Scholar 

  20. Ding, L., Wu, T., Yang, F., & Xiang, M. (2017). Deformation and pore formation mechanism under tensile loading in isotactic polypropylene. Polymer International, 66, 1129–1140.

    Article  Google Scholar 

  21. Ree, T., & Eyring, H. (1955). Theory of Non-Newtonian flow. I. Solid plastic system. Journal of Applied Physics, 26, 793–800.

    Article  MATH  Google Scholar 

  22. van Breemen, L. C. A., Engels, T. A. P., Klompen, E. T. J., Senden, D. J. A., & Govaert, L. E. (2012). Rate- and temperature-dependent strain softening in solid polymers. Journal of Polymer Science Part B: Polymer Physics, 50, 1757–1771.

    Article  Google Scholar 

  23. Klompen, E. T. J., Engels, T. A. P., Govaert, L. E., & Meijer, H. E. H. (2005). Modeling of the postyield response of glassy polymers: Influence of thermomechanical history. Macromolecules, 38, 6997–7008.

    Article  Google Scholar 

  24. van Breemen, L. C. A., Klompen, E. T. J., Govaert, L. E., & Meijer, H. E. H. (2011). Extending the EGP constitutive model for polymer glasses to multiple relaxation times. Journal of the Mechanics and Physics of Solids, 59, 2191–2207.

    Article  MATH  Google Scholar 

  25. Merz, E. H., Claver, G. C., & Baer, M. (1956). Studies on heterogeneous polymeric systems. Journal of Polymer Science, 22, 325–341.

    Article  Google Scholar 

  26. Hsiao, C. C., & Sauer, J. A. (1950). On crazing of linear high polymers. Journal of Applied Physics, 21, 1071–1083.

    Article  Google Scholar 

  27. Sauer, J. A., Marin, J., & Hsiao, C. C. (1949). Creep and damping properties of polystyrene. Journal of Applied Physics, 20, 507–517.

    Article  Google Scholar 

  28. Dijkstra, P. T. S., Van Dijk, D. J., & Huétink, J. (2002). A microscopy study of the transition from yielding to crazing in polypropylene. Polymer Engineering and Science, 42, 152–160.

    Article  Google Scholar 

  29. Pawlak, A., & Galeski, A. (2008). Cavitation during tensile deformation of polypropylene. Macromolecules, 41, 2839–2851.

    Article  Google Scholar 

  30. Bucknall, C. (1967). The relationship between the structure and mechanical properties of rubber-modified thermoplastics. British Plastics, 40, 118–122.

    Google Scholar 

  31. Kambour, R. P. (1965). Report no. 65RL 3982C.

  32. Choi, B. H., Chudnovsky, A., & Pham, H. (2011). Observation and modeling of the tensile behavior of rubber toughened polypropylene. In 69th annual technical conference of the society of plastics engineers 2011, ANTEC 2011 (pp. 1077–82). Boston, MA, USA.

  33. Kambour, R. P. (1964). Structure and properties of crazes in polycarbonate and other glassy polymers. Polymer, 5, 143–155.

    Article  Google Scholar 

  34. Sternstein, S. S., Ongchin, L., & Silverman, A. (1968). Inhomogeneous deformation and yielding of glasslike high polymers. Applied Polymer Symposia, 7, 175.

    Google Scholar 

  35. Oxborough, R. J., & Bowden, P. B. (1973). A general critical-strain criterion for crazing in amorphous glassy polymers. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 28, 547–559.

    Article  Google Scholar 

  36. Argon, A. S., & Hannoosh, J. G. (1977). Initiation of crazes in polystyrene. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 36, 1195–1216.

    Article  Google Scholar 

  37. Argon, A. S., & Salama, M. M. (1977). Growth of crazes in glassy polymers. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 36, 1217–1234.

    Article  Google Scholar 

  38. Bucknall, C. B. (2007). New criterion for craze initiation. Polymer, 48, 1030–1041.

    Article  Google Scholar 

  39. Venkatesan, S., & Basu, S. (2015). Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations. Journal of the Mechanics and Physics of Solids, 77, 123–145.

    Article  MathSciNet  Google Scholar 

  40. Rottler, J., & Robbins, M. O. (2003). Growth, microstructure, and failure of crazes in glassy polymers. Physical Review E, 68, 011801.

    Article  Google Scholar 

  41. Mahajan, D. K., Singh, B., & Basu, S. (2010). Void nucleation and disentanglement in glassy amorphous polymers. Physical Review E, 82, 011803.

    Article  Google Scholar 

  42. Rice, J. R., & Johnson, M. A. (1970). The role of large crack tip geometry changes in plane strain fracture. Inelastic Behaviour of Solids, 1970, 641–672.

    Google Scholar 

  43. van der Wal, A., Mulder, J. J., Thijs, H. A., & Gaymans, R. J. (1998). Fracture of polypropylene: 1. The effect of molecular weight and temperature at low and high test speed. Polymer, 39, 5467–5475.

    Article  Google Scholar 

  44. Gearing, B. P., & Anand, L. (2004). Notch-sensitive fracture of polycarbonate. International Journal of Solids and Structures, 41, 827–845.

    Article  MATH  Google Scholar 

  45. Anand, L., & Gurtin, M. E. (2003). A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. International Journal of Solids and Structures, 40, 1465–1487.

    Article  MATH  Google Scholar 

  46. Praveen, K. M., Taleb, K., Pillin, I., Kervoelen, A., Grohens, Y., Thomas, S., et al. (2022). Comparative mechanical, morphological, rheological, and thermal properties of polypropylene/ethylene-propylene-diene rubber blends. Polymers for Advanced Technologies, 33, 3296–3311.

    Article  Google Scholar 

  47. Mohamad, N., Zainol, N. S., Rahim, F. F., Maulod, H. E. A., Rahim, T. A., Shamsuri, S. R., et al. (2013). Mechanical and morphological properties of polypropylene/epoxidized natural rubber blends at various mixing ratio. Procedia Engineering, 68, 439–445.

    Article  Google Scholar 

  48. Du, H., Zhang, Y., Liu, H., Liu, K., Jin, M., Li, X., et al. (2014). Influence of phase morphology and crystalline structure on the toughness of rubber-toughened isotatic polypropylene blends. Polymer, 55, 5001–5012.

    Article  Google Scholar 

  49. Fasihi, M., & Mansouri, H. (2016). Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene. Journal of Applied Polymer Science, 133, 1.

    Article  Google Scholar 

  50. Borggreve, R. J. M., Gaymans, R. J., Schuijer, J., & Housz, J. F. I. (1987). Brittle-tough transition in nylon-rubber blends: Effect of rubber concentration and particle size. Polymer, 28, 1489–1496.

    Article  Google Scholar 

  51. Muratoglu, O. K., Argon, A. S., Cohen, R. E., & Weinberg, M. (1995). Toughening mechanism of rubber-modified polyamides. Polymer, 36, 921–930.

    Article  Google Scholar 

  52. Bagheri, R., & Pearson, R. A. (1996). Role of particle cavitation in rubber-toughened epoxies: 1. Microvoid toughening. Polymer, 37, 4529–4538.

    Article  Google Scholar 

  53. Pukánszky, B., Tüdös, F., Kalló, A., & Bodor, G. (1989). Multiple morphology in polypropylene/ethylene-propylene-diene terpolymer blends. Polymer, 30, 1399–1406.

    Article  Google Scholar 

  54. Chiang, W.-Y., Yang, W.-D., & Pukánszky, B. (1992). Polypropylene composites. II: Structure–property relationships in two- and three-component polypropylene composites. Polymer Engineering and Science, 32, 641–648.

    Article  Google Scholar 

  55. Zebarjad, S. M., Bagheri, R., Reihani, S. M. S., & Lazzeri, A. (2003). Deformation, yield and fracture of elastomer-modified polypropylene. Journal of Applied Polymer Science, 90, 3767–3779.

    Article  Google Scholar 

  56. Bagheri, R., & Pearson, R. A. (2000). Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance. Polymer, 41, 269–276.

    Article  Google Scholar 

  57. Wang, D., Li, F., Xu, X., Zhong, L., Guan, C., Gao, Y., et al. (2022). Brittle ductile transition of POE toughened HDPE and its lowest rigidity loss: Effect of HDPE molecular weight. Journal of Polymer Research, 29, 38.

    Article  Google Scholar 

  58. Bucknall, C. (1967). British Plastics, 40, 84.

    Google Scholar 

  59. Kato, K. (1965). Electron microscopy of ABS plastics. Journal of Electron Microscopy, 14, 220–221.

    Google Scholar 

  60. Turley, S. G. (1963). A dynamic mechanical study of rubber-modified polystyrenes. Journal of Polymer Science Part C: Polymer Symposia, 1, 101–116.

    Article  Google Scholar 

  61. Lundstedt, O. W., & Bevilacqua, E. M. (1957). Polystyrene-rubber blends. Journal of Polymer Science, 24, 297.

    Article  Google Scholar 

  62. Yang, J., Li, F., Guan, C., Xu, X., Zhong, L., Gao, Y., et al. (2022). Brittle–ductile transition of elastomer toughened HDPE: Effect of elastomer modulus. Journal of Polymer Research, 29, 173.

    Article  Google Scholar 

  63. Jiang, W., An, L., & Jiang, B. (2001). Brittle–tough transition in elastomer toughening thermoplastics: Effects of the elastomer stiffness. Polymer, 42, 4777–4780.

    Article  Google Scholar 

  64. Rabinovitch, E. B., Summers, J. W., & Smith, G. (2003). Impact modification of polypropylene. Journal of Vinyl and Additive Technology, 9, 90–95.

    Article  Google Scholar 

  65. Bucknall, C. B., & Smith, R. R. (1965). Stress-whitening in high-impact polystyrenes. Polymer, 6, 437–446.

    Article  Google Scholar 

  66. Grein, C., Bernreitner, K., Hauer, A., Gahleitner, M., & Neißl, W. (2003). Impact modified isotatic polypropylene with controlled rubber intrinsic viscosities: Some new aspects about morphology and fracture. Journal of Applied Polymer Science, 87, 1702–1712.

    Article  Google Scholar 

  67. Hassan, A., & Haworth, B. (2006). Impact properties of acrylate rubber-modified PVC: Influence of temperature. Journal of Materials Processing Technology, 172, 341–345.

    Article  Google Scholar 

  68. Borggreve, R. J. M., Gaymans, R. J., & Eichenwald, H. M. (1989). Impact behaviour of nylon-rubber blends: 6. Influence of structure on voiding processes; toughening mechanism. Polymer, 30, 78–83.

    Article  Google Scholar 

  69. van der Wal, A., Mulder, J. J., Oderkerk, J., & Gaymans, R. J. (1998). Polypropylene–rubber blends: 1. The effect of the matrix properties on the impact behaviour. Polymer, 39, 6781–6787.

    Article  Google Scholar 

  70. van der Wal, A., Nijhof, R., & Gaymans, R. J. (1999). Polypropylene–rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour. Polymer, 40, 6031–6044.

    Article  Google Scholar 

  71. Piggott, M. R., & Leidner, J. (1974). Misconceptions about filled polymers. Journal of Applied Polymer Science, 18, 1619–1623.

    Article  Google Scholar 

  72. Kunori, T., & Geil, P. H. (1980). Morphology-property relationships in polycarbonate-based blends. II. Tensile and impact strength. Journal of Macromolecular Science, Part B, 18, 135–175.

    Article  Google Scholar 

  73. Nielsen, L. E. (1966). Simple theory of stress–strain properties of filled polymers. Journal of Applied Polymer Science, 10, 97–103.

    Article  Google Scholar 

  74. Sahu, S., & Broutman, L. J. (1972). Mechanical properties of particulate composites. Polymer Engineering and Science, 12, 91–100.

    Article  Google Scholar 

  75. Gupta, A. K., & Purwar, S. N. (1984). Tensile yield behavior of PP/SEBS blends. Journal of Applied Polymer Science, 29, 3513–3531.

    Article  Google Scholar 

  76. Hobbs, S. Y., Bopp, R. C., & Watkins, V. H. (1983). Toughened nylon resins. Polymer Engineering and Science, 23, 380–389.

    Article  Google Scholar 

  77. Wu, S. (1985). Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer, 26, 1855–1863.

    Article  Google Scholar 

  78. Wu, S. (1988). A generalized criterion for rubber toughening: The critical matrix ligament thickness. Journal of Applied Polymer Science, 35, 549–561.

    Article  Google Scholar 

  79. Margolina, A., & Wu, S. (1988). Percolation model for brittle-tough transition in nylon/rubber blends. Polymer, 29, 2170–2173.

    Article  Google Scholar 

  80. Gilbert, D. G., & Donald, A. M. (1986). Toughening mechanisms in high impact polystyrene. Journal of Materials Science, 21, 1819–1823.

    Article  Google Scholar 

  81. Liu, Z. H., Zhang, X. D., Zhu, X. G., Qi, Z. N., & Wang, F. S. (1997). Effect of morphology on the brittle ductile transition of polymer blends: 1. A new equation for correlating morphological parameters. Polymer, 38, 5267–5273.

    Article  Google Scholar 

  82. Liu, Z. H., Li, R. K. Y., Tjong, S. C., Qi, Z. N., Wang, F. S., & Choy, C. L. (1998). Influence of particle dispersion on the matrix ligament thickness of polymer blends. 1. The configuration of well-dispersed particles versus simple cubic lattice. Polymer, 39, 4433–4436.

    Article  Google Scholar 

  83. Liu, Z. H., Li, R. K. Y., Tjong, S. C., Choy, C. L., Zhu, X. G., Qi, Z. N., et al. (1999). Influence of particle dispersion on the matrix ligament thickness of polymer blends: 2. A generalized equation and particle spatial distributions for different morphologies. Polymer, 40, 2903–2915.

    Article  Google Scholar 

  84. Liu, Z., Zhu, X., Wu, L., Li, Y., Qi, Z., Choy, C., et al. (2001). Effects of interfacial adhesion on the rubber toughening of poly(vinyl chloride) Part 1. Impact tests. Polymer, 42, 737–746.

    Article  Google Scholar 

  85. Dijkstra, K., & Ten Bolscher, G. H. (1994). Nylon-6/rubber blends. Journal of Materials Science, 29, 4286–4293.

    Article  Google Scholar 

  86. van der Wal, A., Verheul, A. J. J., & Gaymans, R. J. (1999). Polypropylene–rubber blends: 4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polymer, 40, 6057–6065.

    Article  Google Scholar 

  87. Gaymans, R. J., & Dijkstra, K. (1990). Comments on ‘Percolation model for brittle-tough transition in nylon/rubber blends.’ Polymer, 31, 971.

    Article  Google Scholar 

  88. Wu, S., & Margolina, A. (1990). Reply to comments on percolation model for brittle-tough transition in nylon/rubber blends. Polymer, 31, 972–974.

    Article  Google Scholar 

  89. Jiang, W., Liang, H., & Jiang, B. (1998). Interparticle distance-temperature-strain rate equivalence for the brittle-tough transition in polymer blends. Polymer, 39, 4437–4442.

    Article  Google Scholar 

  90. Jiang, W., Tjong, S. C., & Li, R. K. Y. (2000). Brittle–tough transition in PP/EPDM blends: Effects of interparticle distance and tensile deformation speed. Polymer, 41, 3479–3482.

    Article  Google Scholar 

  91. Jiang, W., An, L.-J., & Jiang, B.-Z. (2003). Brittle–ductile transition of polymers and its percolation model. Chinese Journal of Polymer Science, 21, 129–133.

    Google Scholar 

  92. Okada, O., Keskkula, H., & Paul, D. R. (2000). Fracture toughness of nylon 6 blends with maleated ethylene/propylene rubbers. Polymer, 41, 8061–8074.

    Article  Google Scholar 

  93. van der Wal, A., & Gaymans, R. J. (1999). Polypropylene–rubber blends: 3. The effect of the test speed on the fracture behaviour. Polymer, 40, 6045–6055.

    Article  Google Scholar 

  94. van der Wal, A., & Gaymans, R. J. (1999). Polypropylene–rubber blends: 5. Deformation mechanism during fracture. Polymer, 40, 6067–6075.

    Article  Google Scholar 

  95. Kotter, I., Grellmann, W., Koch, T., & Seidler, S. (2006). Morphology–toughness correlation of polypropylene/ethylene–propylene rubber blends. Journal of Applied Polymer Science, 100, 3364–3371.

    Article  Google Scholar 

  96. Zhao, C., Wu, G., Zhou, C., Yang, H., & Zhang, H. (2006). Independence of the brittle–ductile transition from the rubber particle size for impact-modified poly(vinyl chloride). Journal of Polymer Science Part B: Polymer Physics, 44, 696–702.

    Article  Google Scholar 

  97. Lendvai, L. (2021). A novel preparation method of polypropylene/natural rubber blends with improved toughness. Polymer International, 70, 298–307.

    Article  Google Scholar 

  98. Karger-Kocsis, J., Kmetty, Á., Lendvai, L., Drakopoulos, S. X., & Bárány, T. (2015). Water-assisted production of thermoplastic nanocomposites: A review. Materials, 2015, 72–95.

    Google Scholar 

  99. Gao, W., & Guo, J. (2017). A novel processing method namely fast evaporation mixing to prepare fluoroelastomer/montmorillonite composites. Composites Science and Technology, 139, 26–35.

    Article  Google Scholar 

  100. Francis, B., Thomas, S., Asari, G. V., Ramaswamy, R., Jose, S., & Rao, V. L. (2006). Synthesis of hydroxyl-terminated poly(ether ether ketone) with pendent tert-butyl groups and its use as a toughener for epoxy resins. Journal of Polymer Science Part B: Polymer Physics, 44, 541–556.

    Article  Google Scholar 

  101. Deblieck, R., Remerie, K., Van den Fonteyne, W., & Boerakker, M. (2021). A morphology-based model to describe the low-temperature impact behaviour of rubber-toughened polypropylene. Polymers, 13, 1.

    Article  Google Scholar 

  102. Chang, E., Zhao, J., Zhao, C., Li, G., Lee, P. C., & Park, C. B. (2022). Scalable production of crosslinked rubber nanofibre networks as highly efficient toughening agent for isotactic polypropylene: Toughening mechanism of non-traditional anisotropic rubber inclusion. Chemical Engineering Journal, 438, 134060.

    Article  Google Scholar 

  103. Kim, D.-K., Lee, S. H., Hong, S.-K., Han, S. W., Lee, D. H., & Yu, S. (2022). Low-temperature-toughened polypropylene blends with highly packed elastomeric domains. ACS Applied Polymer Materials, 4, 7834–7840.

    Article  Google Scholar 

  104. Hasanpour, M., Mazidi, M. M., & Aghjeh, M. K. R. (2019). The effect of rubber functionality on the phase morphology, mechanical performance and toughening mechanisms of highly toughened PP/PA6/EPDM ternary blends. Polymer Testing, 79, 106018.

    Article  Google Scholar 

  105. Mazidi, M. M., Razavi Aghjeh, M. K., Khonakdar, H. A., & Reuter, U. (2016). Structure–property relationships in super-toughened polypropylene-based ternary blends of core–shell morphology. RSC Advances, 6, 1508–1526.

    Article  Google Scholar 

  106. Mahendra, I. P., Wirjosentono, B., Tamrin, Ismail, H., Mendez, J. A., & Causin, V. (2019). The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends. Journal of Polymer Research, 26, 215.

    Article  Google Scholar 

  107. Yang, C.-J., Huang, T., Yang, J.-H., Zhang, N., Wang, Y., & Zhou, Z.-W. (2017). Carbon nanotubes induced brittle–ductile transition behavior of the polypropylene/ethylene-propylene-diene terpolymer blends. Composites Science and Technology, 139, 109–116.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Virtual Engineering Platform Program (P0022334). It was also supported by a Korea University fund. The authors would like to extend their special thanks to the late Dr. Yuri Shulkin.

Author information

Authors and Affiliations

Authors

Contributions

J-WW: Conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft preparation, visualization. AC: Conceptualization, resources, methodology. B-HC: Conceptualization, methodology, investigation, resources, writing—review and editing, investigation, supervision, project administration.

Corresponding author

Correspondence to Byoung-Ho Choi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wee, JW., Chudnovsky, A. & Choi, BH. Brittle–Ductile Transitions of Rubber Toughened Polypropylene Blends: A Review. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2023). https://doi.org/10.1007/s40684-023-00581-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-023-00581-w

Keywords

Navigation