Skip to main content
Log in

Parametric energy conserving sampling and weighting for the thermal analysis of Selective Laser Melting

  • Review Article
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work investigates the application of Model Order Reduction (MOR) to the case of a non-linear heat transfer simulation, which pertains to Selective Laser Melting (SLM). A hyper-reduction strategy, relying on the Energy Conserving Sampling and Weighting (ECSW) method, is presented before being implemented within an adaptative POD-Greedy algorithm to build a more general reduced order base composed of versatile thermal modes. To this end, an a-posteriori error estimator is used alongside Ordinary Kriging to evaluate the degree of error committed during the parametrized-MOR process. The approach introduces a novel scheme called parametric Energy Conserving Sampling and Weighting (pECSW), which extends the applicability of the sparse selection of finite elements for larger parametric ranges than what is possible with the regular ECSW approach. Hence, the generic property of the final layout avoids launching an optimization strategy for new model analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Algorithm 1
Algorithm 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Arbabi H, Mezic I (2017) Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM J Appl Dyn Syst 16(4):2096–2126. https://doi.org/10.1137/17M1125236

    Article  MathSciNet  MATH  Google Scholar 

  2. Alla A, Kutzz JN (2019) Randomized model order reduction. Adv Comput Math 45:1251–1271. https://doi.org/10.1007/s10444-018-09655-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339:667–672. https://doi.org/10.1016/j.crma.2004.08.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32:2737–2764. https://doi.org/10.1137/090766498

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlberg K, Farhat C, Cortial JDA (2013) The gnat method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J Comput Phys 242:623–647. https://doi.org/10.1016/j.jcp.2013.02.028

    Article  MathSciNet  MATH  Google Scholar 

  6. Haasdonk B, Ohlberger M (2008) Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math Modell Numer Anal 42:277–302. https://doi.org/10.1051/m2an:2008001

    Article  MathSciNet  MATH  Google Scholar 

  7. Urban K, Patera AT (2014) An improved error bound for reduced basis approximation of linear parabolic problems. Math Comput 83:1599–1615. https://doi.org/10.1090/s0025-5718-2013-02782-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Grepl MA (2012) Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations. J Comput Phys. https://doi.org/10.1142/S0218202511500151

    Article  MathSciNet  MATH  Google Scholar 

  9. Yano M, Patera A (2019) An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs. Comput Methods Appl Mech Eng 344:1104–1123. https://doi.org/10.1016/j.cma.2018.02.028

    Article  MathSciNet  MATH  Google Scholar 

  10. Sleeman M, Yano M (2022) Goal-oriented model reduction for parametrized time-dependent nonlinear partial differential equations. Comput Methods Appl Mech Eng 388:114206. https://doi.org/10.1016/j.cma.2021.114206

    Article  MathSciNet  MATH  Google Scholar 

  11. Farhat C, Chapman T, Avery P (2015) Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int J Numer Methods Eng 102:1077–1110

    Article  MathSciNet  MATH  Google Scholar 

  12. Quarteroni A, Manzoni A, Negri F (2016) Reduced basis methods for partial differential equations, an introduction. Springer, Cham. https://doi.org/10.1007/978-3-319-15431-2

    Book  MATH  Google Scholar 

  13. Paul-Dubois-Taine A, Amsallem D (2015) An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. Int J Numer Methods Eng 102:1262–1292. https://doi.org/10.1002/nme.4759

    Article  MathSciNet  MATH  Google Scholar 

  14. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–423. https://doi.org/10.1214/ss/1177012413

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeidler E (1986) Nonlinear functional analysis and its applications I: fixed-point theorems. Springer, New York

    Book  MATH  Google Scholar 

  16. Repossini G, Laguzza V, Grasso M, Colosimo BM (2017) On the use of spatter signature for in-situ monitoring of laser powder bed fusion. Addit Manuf 16:35–48. https://doi.org/10.1016/j.addma.2017.05.004

    Article  Google Scholar 

  17. Duan G, Sakai M (2022) Numerical investigation of gas entrapment in metal additive manufacturing using a quasi-sharp-interface particle method. Int J Heat Mass Transf 199:123451. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123451

    Article  Google Scholar 

  18. Mercelis P, Kruth J-P (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp 12:254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  19. Li C, Liua JF, Fangb XY, Guoa YB (2017) Efficient predictive model of part distortion and residual stress in selective laser melting. Addit Manufact 17:157–168. https://doi.org/10.1016/j.addma.2017.08.014

    Article  Google Scholar 

  20. Meier C, Weissbach R, Weinberg J, Wall WA, Hart AJ (2019) Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J Mater Process Technol 266:484–501. https://doi.org/10.1016/j.jmatprotec.2018.10.037

    Article  Google Scholar 

  21. Yuan W, Chen H, Cheng T, Wei Q (2020) Effects of laser scanning speeds on different states of the molten pool during selective laser melting: simulation and experiment. Mater Des 189:108542. https://doi.org/10.1016/j.matdes.2020.108542

    Article  Google Scholar 

  22. Setien I (2018) Empirical methodology to determine inherent strains in additive manufacturing. Comput Math Appl 36:2282–2295. https://doi.org/10.1016/j.camwa.2018.05.015

    Article  MathSciNet  MATH  Google Scholar 

  23. Hodge NE, Ferencz RM, Solberg JM (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54:33–51. https://doi.org/10.1007/s00466-014-1024-2

    Article  MathSciNet  Google Scholar 

  24. Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:072101. https://doi.org/10.1002/nme.4820

    Article  Google Scholar 

  25. Nallathambi AK, Bertram A, Specht E (2009) Finite element technique for phase-change heat conduction problem. In: 2009 ASME summer heat transfer conference, p 88106. https://doi.org/10.1115/HT2009-88106. ASME Summer Heat Transfer Conference

  26. Cornwell RE, Malkus DS (1992) Improved numerical dissipation for time integration algorithms in conduction heat transfer. Comput Methods Appl Mech Eng 97:149–156. https://doi.org/10.1016/0045-7825(92)90161-C

    Article  Google Scholar 

  27. Galdino S (2011) A family of Regula Falsi root-finding methods. In: Proceedings of 2011 World Congress on Engineering and Technology. 2011 World Congress on Engineering and Technology, p 88106

  28. Brenner K (2023) Acceleration of newton’s method using nonlinear Jacobi preconditioning. J Comput Appl Math 419:114719

    Article  MATH  Google Scholar 

  29. Brezzi F, Rappaz J, Raviart PA (1980) Finite dimensional approximation of nonlinear problems. Numer Math 36:1–25. https://doi.org/10.1007/BF01395805

    Article  MathSciNet  MATH  Google Scholar 

  30. Kocis L, Whiten WJ (1997) Computational investigations of low-discrepancy sequences. ACM Trans Math Softw 23:266–294. https://doi.org/10.1145/264029.264064

    Article  MATH  Google Scholar 

  31. Tang B (1993) Orthogonal array-based Latin hypercubes. J Ame Stat Assoc 88:1392–1397. https://doi.org/10.2307/2291282

    Article  MathSciNet  MATH  Google Scholar 

  32. Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71:135–146. https://doi.org/10.2307/2336405

    Article  MathSciNet  MATH  Google Scholar 

  33. MacDonald B, Ranjan P, Chipman H (2015) GPfit: An R package for fitting a gaussian process model to deterministic simulator outputs. J Stat Softw 64:1. https://doi.org/10.18637/jss.v064.i12

    Article  Google Scholar 

  34. Andrianakis I, Challenor PG (2012) The effect of the nugget on gaussian process emulators of computer models. J Global Optim 56:4215–4228. https://doi.org/10.1016/j.csda.2012.04.020

    Article  MathSciNet  MATH  Google Scholar 

  35. Jones DR (2012) A taxonomy of global optimization methods based on response surfaces. Comput Stat Data Anal 21:345–383. https://doi.org/10.1023/A:1012771025575

    Article  MathSciNet  MATH  Google Scholar 

  36. Lawson CL, Hanson RJ (1995) Solving least-squares problems. Soc Ind Appl Math. https://doi.org/10.1137/1.9781611971217

    Article  MATH  Google Scholar 

  37. Whiten B (2023) Non negative least square, MATLAB Central File Exchange. Retrieved January 5. find at https://www.mathworks.com/matlabcentral/fileexchange/38003-nnls-non-negative-least-squares

Download references

Acknowledgements

The work leading to this publication has been funded by the project “PROCSIMA”, which fits in the MacroModelMat(M3) research program, coordinated by Siemens (Siemens Digital Industries Software, Belgium) and funded by SIM (Strategic Initiative Materials in Flanders) and VLAIO (Flanders Innovation & Entrepreneurship Agency), as well as the KU Leuven research fund. The VSC (Flemish Supercomputer Center), funded by the research Foundation - Flanders (FWO) and the Flemish Government - department EWI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Amine Ben Yahmed or Frank Naets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Yahmed, M.A., Naets, F. Parametric energy conserving sampling and weighting for the thermal analysis of Selective Laser Melting. Comput Mech (2023). https://doi.org/10.1007/s00466-023-02416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-023-02416-6

Keywords

Navigation