Skip to main content
Log in

Analysis of polyisoprene oligomers via in situ silver nanoparticle formation on thin-layer chromatography plate using matrix-assisted laser-induced desorption/ionization mass spectrometry

  • Special Issue: Note
  • Frontiers of Separation Analysis
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The direct mass spectrometry (MS) detection of polyisoprene (PI) oligomers on a thin-layer chromatography (TLC) plate using matrix-assisted laser-induced desorption/ionization (MALDI) with silver trifluoroacetate as the cationization reagent was investigated. The spots of PI oligomers and silver trifluoroacetate on the TLC plate resulted in brown materials after UV laser irradiation. It was suggested that silver trifluoroacetate yielded Ag nanoparticles as brown materials after heating via laser irradiation. The nanoparticles behaved as an inorganic matrix and a source of Ag+ adduct in the analysis of PI oligomers. The use of organic matrices together with silver trifluoroacetate reduced the signal intensity of PI oligomers on MALDI-MS on a TLC plate. The separation of PI oligomers (polymerization degree, n = 5–11) by TLC resulted in a single elliptical spot without a clear separation after the chromatographic procedure. However, in MS imaging, differences in migration lengths based on degrees of polymerization were clearly observed and the degrees of polymerization were identified without comparison with standards.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Kishi, T. Kumazaki, S. Kitagawa, H. Ohtani, Analyst (2019). https://doi.org/10.1039/C8AN02352B

    Article  PubMed  Google Scholar 

  2. E. Kanao, T. Kubo, T. Naito, T. Sano, M. Yan, N. Tanaka, K. Otsuka, Anal. Chem. (2020). https://doi.org/10.1021/acs.analchem.9b05672

    Article  PubMed  Google Scholar 

  3. K. Matsuo, M. Otsubo, T. Motono, S. Kitagawa, Y. Iiguni, H. Ohtani, Chromatography (2021). https://doi.org/10.15583/jpchrom.2020.025

    Article  Google Scholar 

  4. K. Machida, R. Watanabe, A. Kotani, Y. Hayashi, H. Hakamata, Anal. Sci. (2022). https://doi.org/10.2116/analsci.21P259

    Article  PubMed  Google Scholar 

  5. R. Sakita, H. Kishi, Y. Iiguni, S. Kitagawa, H. Ohtani, Chromatography (2022). https://doi.org/10.15583/jpchrom.2022.007

    Article  Google Scholar 

  6. S. Takagi, M. Shibata, N. Suzuki, Y. Ishihama, J. Chromatogr. A (2022). https://doi.org/10.1016/j.chroma.2022.463645

    Article  PubMed  Google Scholar 

  7. Y. Konya, Y. Izumi, K. Hamase, T. Bamba, J. Chromatogr. A (2022). https://doi.org/10.1016/j.chroma.2022.463305

    Article  PubMed  Google Scholar 

  8. I. Ueta, T. Komatsu, K. Nakagami, Y. Saito, Chromatography (2022). https://doi.org/10.15583/jpchrom.2022.014

    Article  Google Scholar 

  9. R. Nakano, R.K. Gürses, Y. Tanaka, Y. Ishida, T. Kimoto, S. Kitagawa, Y. Iiguni, H. Ohtani, Sci. Total Environ. (2022). https://doi.org/10.1016/j.scitotenv.2022.152981

    Article  PubMed  Google Scholar 

  10. K. Kawabata, A. Miyoshi, H. Nishi, Photochem (2022). https://doi.org/10.3390/photochem2040056

    Article  Google Scholar 

  11. Y. Ishida, S. Furuta, A. Aiba, A. Kuzumaki, D. Miyazawa, A. Watanabe, J. Anal. Appl. Pyrolysis (2022). https://doi.org/10.1016/j.jaap.2022.105758

    Article  Google Scholar 

  12. S. Kitagawa, Chromatography (2023). https://doi.org/10.15583/jpchrom.2022.022

    Article  Google Scholar 

  13. B. Fuchs, R. Süß, A. Nimptsch, J. Schiller, Chromatographia (2009). https://doi.org/10.1365/s10337-008-0661-z

    Article  Google Scholar 

  14. J. Sherma, F. Rabel, J. Liq. Chromatogr. Relat. Technol. (2020). https://doi.org/10.1080/10826076.2020.1725561

    Article  Google Scholar 

  15. R. Borisov, A. Kanateva, D. Zhilyaev, Front. Chem. (2021). https://doi.org/10.3389/fchem.2021.771801

    Article  PubMed  PubMed Central  Google Scholar 

  16. S. Crotty, S. Gerişlioğlu, K.J. Endres, C. Wesdemiotis, U.S. Schubert, Anal. Chim. Acta (2016). https://doi.org/10.1016/j.aca.2016.05.024

    Article  PubMed  Google Scholar 

  17. K. De Bruycker, A. Welle, S. Hirth, S.J. Blanksby, C. Barner-Kowollik, Nat. Rev. Chem. (2020). https://doi.org/10.1038/s41570-020-0168-1

    Article  PubMed  Google Scholar 

  18. T.N.J. Fouquet, R.B. Cody, Y. Ozeki, S. Kitagawa, H. Ohtani, H. Sato, J. Am. Soc. Mass Spectrom. (2018). https://doi.org/10.1007/s13361-018-1972-4

    Article  PubMed  PubMed Central  Google Scholar 

  19. S. Nakamura, R.B. Cody, H. Sato, T.N.J. Fouquet, Anal. Chem. (2019). https://doi.org/10.1021/acs.analchem.8b04371

    Article  PubMed  Google Scholar 

  20. Y. Ozeki, M. Omae, S. Kitagawa, H. Ohtani, Analyst (2019). https://doi.org/10.1039/c8an02500b

    Article  PubMed  Google Scholar 

  21. M. Omae, Y. Ozeki, S. Kitagawa, H. Ohtani, Rapid Commun. Mass Spectrom. (2021). https://doi.org/10.1002/rcm.9176

    Article  PubMed  Google Scholar 

  22. Y. Ozeki, S. Kitagawa, H. Ohtani, Y. Kondo, H. Shinada, Rapid Commun. Mass Spectrom. (2023). https://doi.org/10.1002/rcm.9455

    Article  PubMed  Google Scholar 

  23. F.C.L. Ciolacu, N.R. Choudhury, N. Dutta, N.H. Voelcker, Macromolecules (2006). https://doi.org/10.1021/ma060757w

    Article  Google Scholar 

  24. H. Ji, G. Sakellariou, J.W. Mays, Macromolecules (2007). https://doi.org/10.1021/ma062909t

    Article  Google Scholar 

  25. S.F. Macha, P.A. Limbach, P.J. Savickas, J. Am. Soc. Mass Spectrom. (2000). https://doi.org/10.1016/S1044-0305(00)00137-9

    Article  PubMed  Google Scholar 

  26. BioMap, http://ms-imaging.org/biomap/. Accessed 5 June 2023

  27. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, T. Matsuo, Rapid Commun. Mass Spectrom. (1988). https://doi.org/10.1002/rcm.1290020802

    Article  Google Scholar 

  28. S. Taira, Y. Sugiura, S. Moritake, S. Shimma, Y. Ichiyanagi, M. Setou, Anal. Chem. (2008). https://doi.org/10.1021/ac800081z

    Article  PubMed  Google Scholar 

  29. T. Habumugisha, Z. Zhang, J.C. Ndayishimiye, F. Nkinahamira, A. Kayiranga, E. Cyubahiro, A. Rehman, C. Yan, X. Zhang, Anal. Methods (2022). https://doi.org/10.1039/D1AY02219A

    Article  PubMed  Google Scholar 

  30. M. Guan, Z. Zhang, S. Li, J. Liu, L. Liu, H. Yang, Y. Zhang, T. Wang, Z. Zhao, Talanta (2018). https://doi.org/10.1016/j.talanta.2017.11.067

    Article  PubMed  Google Scholar 

  31. B. Fuchs, R. Süß, K. Teuber, M. Eibisch, J. Schiller, J. Chromatogr. A (2011). https://doi.org/10.1016/j.chroma.2010.11.066

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The MS and SEM/EDS measurements were supported by the Equipment Sharing Division, Organization for Co-Creation Research and Social Contributions, Nagoya Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irifune, R., Ishikawa, T., Kitagawa, S. et al. Analysis of polyisoprene oligomers via in situ silver nanoparticle formation on thin-layer chromatography plate using matrix-assisted laser-induced desorption/ionization mass spectrometry. ANAL. SCI. 39, 1823–1827 (2023). https://doi.org/10.1007/s44211-023-00420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00420-7

Keywords

Navigation