Skip to main content
Log in

Electrochemical determination of ethylvanillin based on LaV@GAC nanocomposite

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5–103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. O. Moradi, Food Chem Toxicol. 168, 113391 (2022). https://doi.org/10.1016/j.fct.2022.113391

    Article  CAS  PubMed  Google Scholar 

  2. É. Pérez-Esteve, M.J. Lerma-García, A. Fuentes, C. Palomares, J.M. Barat, Food Control 67, 171 (2016). https://doi.org/10.1016/j.foodcont.2016.02.048

    Article  CAS  Google Scholar 

  3. A.K. Sinha, U.K. Sharma, N. Sharma, Int J Food Sci Nutr. 59(4), 299 (2008). https://doi.org/10.1080/09687630701539350

    Article  CAS  PubMed  Google Scholar 

  4. P. Deng, Z. Xu, R. Zeng, C. Ding, Food Chem. 180, 156 (2015). https://doi.org/10.1016/j.foodchem.2015.02.035

    Article  CAS  PubMed  Google Scholar 

  5. J. Li, H. Feng, J. Li, J. Jiang, Y. Feng, L. He, D. Qian, Electrochim. Acta 176, 827 (2015). https://doi.org/10.1016/j.electacta.2015.07.091

    Article  CAS  Google Scholar 

  6. D. Farthing, D. Sica, C. Abernathy, I. Fakhry, J.D. Roberts, D.J. Abraham, P. Swerdlow, J. Chromatogr. B Biomed. Sci. Appl. 726(1), 303 (1999). https://doi.org/10.1016/s0378-4347(99)00031-6

    Article  CAS  PubMed  Google Scholar 

  7. D.Q. Li, Z.Q. Zhang, X.L. Yang, C.H. Zhou, J.L. Qi, J Sep Sci. 39(17), 3318 (2016). https://doi.org/10.1002/jssc.201600466

    Article  CAS  PubMed  Google Scholar 

  8. S.K. Wadman, D. Ketting, P.A. Voûte, Clin. Chim. Acta 72(1), 49 (1976). https://doi.org/10.1016/0009-8981(76)90036-x

    Article  CAS  PubMed  Google Scholar 

  9. J. Peng, M. Wei, Y. Hu, Y. Yang, Y. Guo, F. Zhang, Food Anal. Meth. 12(8), 1725 (2019). https://doi.org/10.1007/s12161-019-01518-3

    Article  Google Scholar 

  10. A. Longares-Patron, M.P. Canizares-Macias, Talanta 69(4), 882 (2006). https://doi.org/10.1016/j.talanta.2005.11.030

    Article  CAS  PubMed  Google Scholar 

  11. A.A. Elbashir, R.E. Elgack Elgorashe, A.O. Alnajjar, H.Y. Aboul-Enein, Separation Sci. Plus (2021). https://doi.org/10.1002/sscp.202100001

    Article  Google Scholar 

  12. A. Venkadesh, J. Mathiyarasu, S. Radhakrishnan, Mater. Today Chem. 22, 100554 (2021). https://doi.org/10.1016/j.mtchem.2021.100554

    Article  CAS  Google Scholar 

  13. L. Fu, K. Xie, D. Wu, A. Wang, H. Zhang, Z. Ji, Mater. Chem. Phy. 242, 122462 (2020). https://doi.org/10.1016/j.matchemphys.2019.122462

    Article  CAS  Google Scholar 

  14. J. Peng, L. Wei, Y. Liu, W. Zhuge, Q. Huang, W. Huang, G. Xiang, C. Zhang, RSC Adv. 10(60), 36828 (2020). https://doi.org/10.1039/d0ra06783k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. Taouri, M. Bourouina, S. Bourouina-Bacha, D. Hauchard, J. Food Comp Anal 100, 103811 (2021). https://doi.org/10.1016/j.jfca.2021.103811

    Article  CAS  Google Scholar 

  16. Y. Tian, P. Deng, Y. Wu, J. Liu, J. Li, G. Li, Q. He, Microchem. J. 157, 104885 (2020). https://doi.org/10.1016/j.microc.2020.104885

    Article  CAS  Google Scholar 

  17. S. Tajik, A. Lohrasbi-Nejad, P.M. Jahani, M. Bagher Askari, H. Beitollahi, J. Mater. Sci. Mater. Electr. 33(4), 2020 (2022). https://doi.org/10.1007/s10854-021-07405-0

    Article  CAS  Google Scholar 

  18. J.N. Baby, B. Sriram, S.F. Wang, M. George, ACS Sustain. Chem. Eng. 8(3), 1479 (2020). https://doi.org/10.1021/acssuschemeng.9b05755

    Article  CAS  Google Scholar 

  19. S. Anantharaj, K. Karthick, S. Kundu, Inorg Chem. 58(13), 8570 (2019). https://doi.org/10.1021/acs.inorgchem.9b00868

    Article  CAS  PubMed  Google Scholar 

  20. M. Michalska, J.B. Jasiński, J. Pavlovsky, P. Żurek-Siworska, A. Sikora, P. Gołębiewski, A. Szysiak, V. Matejka, J. Seidlerova, J. Luminescence. 233, 117934 (2021). https://doi.org/10.1016/j.jlumin.2021.117934

    Article  CAS  Google Scholar 

  21. T. Kokulnathan, G. Almutairi, S.M. Chen, T.W. Chen, F. Ahmed, N. Arshi, B. AlOtaibi, ACS Sustainable Chem. Eng. 9(7), 2784 (2021). https://doi.org/10.1021/acssuschemeng.0c08340

    Article  CAS  Google Scholar 

  22. R. Ye, J. Cai, Y. Pan, X. Qiao, W. Sun, Diamond Related Materials. 105, 107816 (2020). https://doi.org/10.1016/j.diamond.2020.107816

    Article  CAS  Google Scholar 

  23. L. Tao, Y. Huang, X. Yang, Y. Zheng, C. Liu, M. Di, Z. Zheng, RSC Adv. 8(13), 7102 (2018). https://doi.org/10.1039/c7ra13639k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Huang, W. Cheng, Y. Li, Talanta 238, 122991 (2022). https://doi.org/10.1016/j.talanta.2021.122991

    Article  CAS  PubMed  Google Scholar 

  25. B. Mutharani, M. Keerthi, S.M. Chen, P. Ranganathan, T.W. Chen, S.Y. Lee, W.H. Chang, ACS Appl. Mater. Interfaces 12(4), 4980 (2020). https://doi.org/10.1021/acsami.9b16123

    Article  CAS  PubMed  Google Scholar 

  26. H. Yin, D. Zhou, L. Cong, H.M. Xie, Y.Q. Qiu, Chem. J. Chin. Universities. 36(10), 1990 (2015). https://doi.org/10.7503/cjcu20150241

    Article  CAS  Google Scholar 

  27. A. Yamuna, T.W. Chen, S.M. Chen, W.L. Wu, J Electroanal. Chem. 901, 115772 (2021). https://doi.org/10.1016/j.jelechem.2021.115772

    Article  CAS  Google Scholar 

  28. Y. He, Y. Wang, L. Zhao, X. Wu, Y. Wu, J. Mol. Catal. A: Chem. 337(1), 61 (2011). https://doi.org/10.1016/j.molcata.2011.01.015

    Article  CAS  Google Scholar 

  29. Y. Fan, P. Liu, B. Zhu, S. Chen, K. Yao, R. Han, Int. J. Hydrogen Energy 40(18), 6188 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.090

    Article  CAS  Google Scholar 

  30. Y. Xu, J. Liu, M. Xie, L. Jing, H. Xu, X. She, H. Li, J. Xie, Chem. Eng. J. 357, 487 (2019). https://doi.org/10.1016/j.cej.2018.09.098

    Article  CAS  Google Scholar 

  31. I.A. Mkhalid, R.M. Mohamed, M. Alhaddad, A. Basaleh, L.A. Al-Hajji, A.A. Ismail, Ceram. Int. 48(10), 14899 (2022). https://doi.org/10.1016/j.ceramint.2022.02.028

    Article  CAS  Google Scholar 

  32. Y. Xie, J. Yin, J. Zheng, L. Wang, J. Wu, M. Dresselhaus, X. Zhang, ACS Appl. Materials Interfaces 11(35), 32244 (2019). https://doi.org/10.1021/acsami.9b06934

    Article  CAS  Google Scholar 

  33. H. Du, Y. Zhang, X. Wang, H. Hu, J. Ai, H. Zhou, X. Yan, Y. Yang, Z. Lu, Biosensors 12(9), 760 (2022). https://doi.org/10.3390/bios12090760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M.A. Abdelaziz, F.R. Mansour, N.D. Danielson, Anal. Bioanal. Chem. 413, 205 (2021). https://doi.org/10.1007/s00216-020-02992-z

    Article  CAS  PubMed  Google Scholar 

  35. R. Liu, Y. Wang, B. Li, B. Liu, H. Ma, D. Li, L. Dong, F. Li, X. Chen, X. Yin, Materials 12(21), 3637 (2019). https://doi.org/10.3390/ma12213637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. Uzun, H. Arslan, A.B. Gündüzalp, E. Hasdemir, Surf. Coat. Technol. 239, 108 (2014). https://doi.org/10.1016/j.surfcoat.2013.11.028

    Article  CAS  Google Scholar 

  37. Y. Zhao, Y. Du, D. Lu, L. Wang, D. Ma, T. Ju, M. Wu, Anal. Methods 6(6), 1753 (2014). https://doi.org/10.1039/c3ay41517a

    Article  CAS  Google Scholar 

  38. M.P. Miranda, R. del Rio, M.A. del Valle, M. Faundez, F. Armijo, J. Electroanal. Chem. 668, 1 (2012). https://doi.org/10.1016/j.jelechem.2011.12.022

    Article  CAS  Google Scholar 

  39. L. Chen, K. Chaisiwamongkhol, Y. Chen, R.G. Compton, Electroanalysis 31, 1067 (2019). https://doi.org/10.1002/elan.201900037

    Article  CAS  Google Scholar 

  40. T.T. Calam, D. Uzun, Electroanalysis 31(12), 2347 (2019). https://doi.org/10.1002/elan.201900328

    Article  CAS  Google Scholar 

  41. J. Kalaiyarasi, S. Meenakshi, K. Pandian, S.C.B. Gopinath, Microchim Acta. 184, 2131 (2017). https://doi.org/10.1007/s00604-017-2161-z

    Article  CAS  Google Scholar 

  42. A.S. Farag, M. SýS, T. Hájek, K. Vytřas, Monatshefte für Chemie Chem. Monthly. 149(11), 1945 (2018). https://doi.org/10.1007/s00706-018-2266-z

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 81860701, 82060714), Guizhou Provincial Science and Technology Projects (NO. ZK[2021]242)), The Innovation Team Project of Guizhou Higher Education ([2022]013), The open project of Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry (KSUZDSYS202104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Duan, Y., Ai, J. et al. Electrochemical determination of ethylvanillin based on LaV@GAC nanocomposite. ANAL. SCI. 39, 2049–2058 (2023). https://doi.org/10.1007/s44211-023-00422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00422-5

Keywords

Navigation