Skip to main content
Log in

Synthesis and Photoelectric Properties of D-A Conjugated Polymers of Benzothiadiazoles with Different Molecular Weights

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this work, we have synthesized and characterized a series of Donor−Acceptor (D–A) conjugated polymers (PffBT4T-2DT) with different molecular weights, introduced a microwave method into the synthesis process, shortened the experimental cycle time by over 5 days and increased the molecular weight of the polymers. The conditions affecting the molecular weight of the polymers were investigated. It is shown that the prepared conjugated polymers have excellent thermal stability and solubility, higher molecular weight polymers have broader absorption spectra and stronger inter-chain aggregation, and the strong aggregation ability of polymer chains is dependent on molecular weight and solution temperature, with lower polymer molecular weight and higher solution temperature both causing weaker polymer chain aggregation. The polymer films of the three molecular weights have a uniform surface with a roughness of about 0.83 and good crystallinity. Transistor test results show that the higher molecular weight polymers perform better when applied to field effect transistors, with mobilities as high as 0.124 cm2 V−1 s−1 and threshold voltages as low as 2 V.

Graphical Abstract

A series of donor-acceptor conjugated polymers (PffBT4T-2DT) with different molecular weights were synthesized by introducing the microwave method. The thermodynamic, optical, electrochemical and photovoltaic properties of the polymers were characterized, and the effect of molecular weight on the performance of organic field effect transistors (OFETs) was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kim M, Ryu S U, Park S A, Choi K, Kim T, Chung D and Park T 2019 Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report Adv. Funct. Mater. 30

  2. Podzorov V 2013 Organic single crystals: Addressing the fundamentals of organic electronics MRS Bull. 38 15

    Article  Google Scholar 

  3. Sirringhaus H 2014 25th anniversary article: Organic field-effect transistors: the path beyond amorphous silicon Adv. Mater. 26 1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang C, Dong H, Hu W, Liu Y and Zhu D 2012 Semiconducting pi-conjugated systems in field-effect transistors: a material odyssey of organic electronics Chem. Rev. 112 2208

    Article  CAS  PubMed  Google Scholar 

  5. Wu H, Ying L, Yang W and Cao Y 2009 Progress and perspective of polymer white light-emitting devices and materials Chem. Soc. Rev. 38 3391

    Article  CAS  PubMed  Google Scholar 

  6. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q and Kido J 2011 Recent progresses on materials for electrophosphorescent organic light-emitting devices Adv. Mater. 23 926

    Article  CAS  PubMed  Google Scholar 

  7. Cheng P, Li G, Zhan X and Yang Y 2018 Next-generation organic photovoltaics based on non-fullerene acceptors Nat. Photon. 12 131

    Article  CAS  Google Scholar 

  8. Janssen R A and Nelson J 2013 Factors limiting device efficiency in organic photovoltaics Adv. Mater. 25 1847

    Article  CAS  PubMed  Google Scholar 

  9. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D and Yu L 2015 Recent Advances in Bulk Heterojunction Polymer Solar Cells Chem. Rev. 115 12666

    Article  CAS  PubMed  Google Scholar 

  10. Baeg KJ, Caironi M and Noh YY 2013 Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors Adv. Mater. 25 4210

    Article  CAS  PubMed  Google Scholar 

  11. Chortos A, Liu J and Bao Z 2016 Pursuing prosthetic electronic skin Nat. Mater. 15 937

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda K, Takeda Y, Yoshimura Y, Shiwaku R, Tran L T, Sekine T, et al. 2014 Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films Nat. Commun. 5 4147

    Article  CAS  PubMed  Google Scholar 

  13. Tran H, Feig V R, Liu K, Zheng Y and Bao Z 2019 Polymer Chemistries Underpinning Materials for Skin-Inspired Electronics Macromolecules 52 3965

    Article  CAS  Google Scholar 

  14. Yao Y, Dong H and Hu W 2016 Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices Adv. Mater. 28 4513

    Article  CAS  PubMed  Google Scholar 

  15. He X, Mukherjee S, Watkins S, Chen M, Qin T, Thomsen L, et al. 2014 Influence of Fluorination and Molecular Weight on the Morphology and Performance of PTB7:PC71BM Solar Cells J. Phys. Chem. C 118 9918

    Article  CAS  Google Scholar 

  16. Li W, Yang L, Tumbleston J R, Yan L, Ade H and You W 2014 Controlling molecular weight of a high efficiency donor-acceptor conjugated polymer and understanding its significant impact on photovoltaic properties Adv. Mater. 26 4456

    Article  CAS  PubMed  Google Scholar 

  17. Lu L, Zheng T, Xu T, Zhao D and Yu L 2015 Mechanistic Studies of Effect of Dispersity on the Photovoltaic Performance of PTB7 Polymer Solar Cells Chem. Mater. 27 537

    Article  CAS  Google Scholar 

  18. Ma W, Yang G, Jiang K, Carpenter J H, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H and Yan H 2015 Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High-Performance PffBT4T-2OD: PC71BM Organic Solar Cells Adv. Energy Mater. 5

  19. Vangerven T, Verstappen P, Drijkoningen J, Dierckx W, Himmelberger S, Salleo A, et al. 2015 Molar Mass versus Polymer Solar Cell Performance: Highlighting the Role of Homocouplings Chem. Mater. 27 3726

    Article  CAS  Google Scholar 

  20. Arunagiri L, Zhang G, Hu H, Yao H, Zhang K, Li Y, Chow P C Y, Ade H and Yan H 2019 Temperature‐Dependent Aggregation Donor Polymers Enable Highly Efficient Sequentially Processed Organic Photovoltaics Without the Need of Orthogonal Solvents Adv. Funct. Mater. 29

  21. Chen S, Wang Y, Zhang L, Zhao J, Chen Y, Zhu D, et al. 2018 Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer Adv. Mater. 30 e1804215

    Article  PubMed  Google Scholar 

  22. Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, et al. 2014 Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells Adv. Mater. 26 2586

    Article  CAS  PubMed  Google Scholar 

  23. Chochos C L, Spanos M, Katsouras A, Tatsi E, Drakopoulou S, Gregoriou V G and Avgeropoulos A 2019 Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules Prog. Polym. Sci. 91 51

    Article  CAS  Google Scholar 

  24. Liao X, Zhang L, Chen L, Hu X, Ai Q, Ma W and Chen Y 2017 Room temperature processed polymers for high-efficient polymer solar cells with power conversion efficiency over 9% Nano Energy 37 32

  25. Liu J, Ma L-K, Sheong F K, Zhang L, Hu H, Zhang J-X, et al. 2018 Carboxylate substitution position influencing polymer properties and enabling non-fullerene organic solar cells with high open circuit voltage and low voltage loss J. Mater. Chem. A 6 16874

    Article  CAS  Google Scholar 

  26. Albrecht S, Janietz S, Schindler W, Frisch J, Kuipers J, Kniepert J, et al. 2012 Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells J. Am. Chem. Soc. 134 14932

    Article  CAS  PubMed  Google Scholar 

  27. Xiao J, Jia X, Duan C, Huang F, Yip H L and Cao Y 2021 Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent Adv. Mater. 33 e2008158

    Article  PubMed  Google Scholar 

  28. Yao H, Li Y, Hu H, Chow P C Y, Chen S, Zhao J, Li Z, Carpenter J H, Lai J Y L, Yang G, Liu Y, Lin H, Ade H and Yan H 2017 A Facile Method to Fine‐Tune Polymer Aggregation Properties and Blend Morphology of Polymer Solar Cells Using Donor Polymers with Randomly Distributed Alkyl Chains Adv. Energy Mater. 8

  29. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, et al. 2013 A polymer tandem solar cell with 10.6% power conversion efficiency Nat. Commun. 4 1446

    Article  PubMed  Google Scholar 

  30. Zhou H, Yang L, Stuart A C, Price S C, Liu S and You W 2011 Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency Angew. Chem. 50 2995

    Article  CAS  Google Scholar 

  31. Hu H, Chow PCY, Zhang G, Ma T, Liu J, Yang G and Yan H 2017 Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics Acc. Chem. Res. 50 2519

    Article  CAS  PubMed  Google Scholar 

  32. Kim J-H, Shin S A, Park J B, Song C E, Shin W S, Yang H, et al. 2014 Fluorinated Benzoselenadiazole-Based Low-Band-Gap Polymers for High Efficiency Inverted Single and Tandem Organic Photovoltaic Cells Macromolecules 47 1613

    Article  CAS  Google Scholar 

  33. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, et al. 2014 Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells Nat. Commun. 5 5293

    Article  CAS  PubMed  Google Scholar 

  34. An C, Li M, Marszalek T, Li D, Berger R, Pisula W and Baumgarten M 2014 Thiadizoloquinoxaline-Based Low-Bandgap Conjugated Polymers as Ambipolar Semiconductors for Organic Field Effect Transistors Chem. Mater. 26 5923

    Article  CAS  Google Scholar 

  35. Cardona C M, Li W, Kaifer A E, Stockdale D and Bazan G C 2011 Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications Adv. Mater. 23 2367

    Article  CAS  PubMed  Google Scholar 

  36. Zhu Y, Zhao F, Wang W, Li Y, Zhang S and Lin Y 2022 Exciton Binding Energy of Non‐Fullerene Electron Acceptors Adv. Energy Sustain. Res. 3

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 32072297), Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

Funding

National Natural Science Foundation of China, 32072297, Wanzhen Xu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenming Yang or Wanzhen Xu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1099 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, P., Fang, Q. et al. Synthesis and Photoelectric Properties of D-A Conjugated Polymers of Benzothiadiazoles with Different Molecular Weights. J Chem Sci 135, 110 (2023). https://doi.org/10.1007/s12039-023-02226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02226-6

Keywords

Navigation