Skip to main content
Log in

Multilevel Monte Carlo simulation for the Heston stochastic volatility model

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We combine the multilevel Monte Carlo (MLMC) method with a numerical scheme for the Heston model that simulates the variance process exactly or almost exactly and applies the stochastic trapezoidal rule to approximate the time-integrated variance process within the SDE of the logarithmic asset process. We conduct separate simulations for path-independent options and path-dependent options. In both situations, novel MLMC estimators are established, and the theoretical convergence rates are derived for the full parameter regime. We present numerical results to demonstrate the efficiency of our MLMC estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Method Appl. 11(4), 355–384 (2005)

    Article  MathSciNet  Google Scholar 

  2. Alfonsi, A.: High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comput. 79(269), 209–237 (2010)

    Article  MathSciNet  Google Scholar 

  3. Altmayer, M., Neuenkirch, A.: Multilevel Monte Carlo quadrature of discontinuous payoffs in the generalized Heston model using Malliavin integration by parts. SIAM J. Financial Math. 6(1), 22–52 (2015)

    Article  MathSciNet  Google Scholar 

  4. Altmayer, M., Neuenkirch, A.: Discretizing the Heston model: an analysis of the weak convergence rate. IMA J. Numer. Anal. 37(4), 1930–1960 (2017)

    MathSciNet  Google Scholar 

  5. Andersen, L.: Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Finance 11(3), 1–41 (2008)

    Article  Google Scholar 

  6. Andersen, L., Brotherton-Ratchie, R.: Extended LIBOR market models with stochastic volatility. J. Comput. Finance 9(1), 1–40 (2005)

    Article  Google Scholar 

  7. Andersen, L., Piterbarg, V.: Moment explosions in stochastic volatility models. Finance Stochast. 11(1), 29–50 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options. Rev. Financial Stud. 9, 69–107 (1996)

  9. Broadie, M., Kaya, O.: Exact simulation of stochastic volatility and other affine jump diffusion processes. Oper. Res. 54(2), 217–231 (2006)

    Article  MathSciNet  Google Scholar 

  10. Brigo, D., Mercurio, F.: Interest rate models–theory and practice: with smile, inflation and credit, Springer Verlag (2006)

  11. Cox, J., Ingersoll, J., Ross, S.: A theory of term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  12. Duffie, D., Glynn, P.: Efficient Monte Carlo simulation of security prices. Ann. Appl. Probab. 5(4), 897–905 (1995)

    Article  MathSciNet  Google Scholar 

  13. Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process. Proc. Royal Soc. A 468, 1105–1115 (2012)

    Article  MathSciNet  Google Scholar 

  14. Dufresne, D.: The integrated square-root process. Working Paper, University of Montreal. https://minerva-access.unimelb.edu.au/handle/11343/33693 (2001)

  15. Fischer, M., Nappo, G.: On the moments of the modulus of continuity of Itô processes. Stoch. Anal. Appl. 28(1), 103–122 (2009)

    Article  Google Scholar 

  16. Giles, M.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  Google Scholar 

  17. Giles, M.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  Google Scholar 

  18. Giles, M., Higham, J., Mao, X.: Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff. Finance Stochast. 13(3), 403–413 (2009)

    Article  MathSciNet  Google Scholar 

  19. Giles, M., Szpruch, L.: Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation. Ann. Appl. Probab. 24(4), 1585–1620 (2014)

    Article  MathSciNet  Google Scholar 

  20. Glasserman, P.: Monte Carlo methods in financial engineering. Springer (2003)

  21. Glasserman, P., Kim, K.: Gamma expansion of the Heston stochastic volatility model. Finance Stochast. 15, 267–296 (2011)

    Article  MathSciNet  Google Scholar 

  22. Grzelak, L.A., Oosterlee, C.W.: On the Heston model with stochastic interest rates. SIAM J Financial Math. 2(1), 255–286 (2011)

    Article  MathSciNet  Google Scholar 

  23. Hefter, M., Jentzen, A.: On arbitrarily slow convergence rates for strong numerical approximations of Cox-Ingersoll-Ross processes and squared Bessel processes. Finance Stochast. 23, 139–172 (2019)

    Article  MathSciNet  Google Scholar 

  24. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  Google Scholar 

  25. Higham, D., Mao, X.: Convergence of the Monte Carlo simulations involving the meanreverting square root process. J. Comput. Finance 8(3), 35–62 (2005)

    Article  Google Scholar 

  26. Hutzenthaler, M., Jentzen, A., Noll, M.: Strong convergence rates and temporal regularity for Cox-Ingersoll-Ross processes and Bessel processes with accessible boundaries. arXiv:1403.6385 (2014)

  27. Jourdain, B., Sbai, M.: High order discretization schemes for stochastic volatility models. J. Comput. Finance 17, 113–165 (2013)

    Article  Google Scholar 

  28. Not-so-complex logarithms in the Heston Model: Kahl, C and J\(\ddot{a}\)ckel, P. Wilmott Mag. 19, 94–103 (2005)

    Google Scholar 

  29. Kahl, C., Jäckel, P.: Fast strong approximation Monte Carlo schemes for stochastic volatility models. Quant. Finance 6, 513–536 (2006)

    Article  MathSciNet  Google Scholar 

  30. Kloeden, P., Neuenkirch, A.: Convergence of numerical methods for stochastic differential equations in mathematical finance. Recent Developments in Computational Finance (2012)

  31. Kloeden, P., Platen, E.: Numerical solution of stochastic differential equations, 3rd edition, Springer (1999)

  32. Lindsay, A., Brecher, D.: Simulation of the CEV process and the local martingale property. Math. Comput. Simul. 82(5), 868–878 (2012)

    Article  MathSciNet  Google Scholar 

  33. Lord, R., Koekkoek, R., Van Dijk, D.: A comparison of biased simulation schemes for stochastic volatility models. Quant. Finance 10(2), 177–194 (2010)

    Article  MathSciNet  Google Scholar 

  34. Malham, S.J.A., Wiese, A.: Chi-square simulation of the CIR process and the Heston model. Int. J. Theor. Appl. Finance 16(3), 1–38 (2013)

    Article  MathSciNet  Google Scholar 

  35. Marsaglia, G., Tsang, W.: A simple method for generating gamma variables. ACM Trans. Math. Softw. 26(3), 363–372 (2000)

    Article  MathSciNet  Google Scholar 

  36. Mickel, A., Neuenkirch, A.: The weak convergence rate of two semi-exact discretization schemes for the Heston model. Risks 9(1), 23 (2021)

    Article  Google Scholar 

  37. Mickel, A., Neuenkirch, A.: The weak convergence order of two Euler-type discretization schemes for the log-Heston model. IMA J Numer. Anal. (2022)

  38. Protter, P.: Stochastic integration and differential equations, 2nd edition, Springer (2005)

  39. Smith, R.D.: An almost exact simulation method for the Heston model. J. Comput. Finance 11(1), 115–125 (2007)

    Article  Google Scholar 

  40. Van Haastrecht, A., Pelsser, A.: Efficient, almost exact simulation of the Heston stochastic volatility model. Int. J. Theor. Appl. Finance 13(1), 1–41 (2010)

    Article  MathSciNet  Google Scholar 

  41. Zheng, C.: Weak convergence rate of a time-discrete scheme for the Heston stochastic volatility model. SIAM J. Numer. Anal. 55(3), 1243–1263 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zheng, C.: Higher-order weak schemes for the Heston stochastic volatility model by extrapolation. J. Math. Anal. Appl. 505(1), 125463 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this research was completed when I was at Heriot-Watt University. I would like to express my gratitude to Dr. Anke Wiese and Dr. Simon Malham for their guidance and for polishing the article and to Prof. Mike Giles for very constructive discussions on multilevel Monte Carlo. Moreover, I also thank the referees of the previous submissions for their valuable comments and suggestions, which have led to a significant improvement in the quality of this article. In particular, one referee generously shared with me an approach to simplify the proof in the convergence analysis.

Funding

This work is supported partially by the National Natural Science Foundation of China grant 11801504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zheng.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Communicated by: Anthony Nouy

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. The NCI method

Appendix. The NCI method

We revisit the NCI method by Van Haastrecht and Pelsser [40]. Let \(Q_{max}\) be a positive integer, \(\mathcal {Q}:=\{0,1,2,...,Q_{max}\}\) be a set of some Poisson-values, and \(\mathcal {U}:=\{0,...,1-\delta \}\in [0,1)\), in which \(\delta \) is a small number such as \(10^{-15}\). The NCI method starts with a precalculation of the inverse of the chi-square distributions, i.e., it calculates

$$\begin{aligned} H_{Q}^{-1}(U):=G_{\mathcal {X}_{d+2Q}^{2}}^{-1}(U),\quad \forall Q\in \mathcal {Q}, \forall U\in \mathcal {U} \end{aligned}$$
(28)

where \(G_{\mathcal {X}_{d+2Q}^{2}}^{-1}\) is the inverse of the chi-square distribution with \(d+2Q\) degrees of freedom. Here, \(d=\frac{4\theta k}{\sigma ^{2}}\). Recall that for the variance process, \(V_{t}\) at time t follows the scaled noncentral chi-square distribution

$$ C_{0}\chi _{d}^{2}(\lambda ) $$

given \(V_{u}\) for any \(u<t\), with \(C_{0}=\frac{\sigma ^{2}(1-\textrm{e}^{-k(t-u)})}{4k}\) and \(\lambda =\frac{4k\textrm{e}^{-k(t-u)}}{\sigma ^{2}(1-\textrm{e}^{-k(t-u)})}V_{u}\). The NCI method then generates one sample Q from the Poisson distribution with the mean \(\frac{\lambda }{2}\) and another sample U from the uniform distribution on (0, 1). A sample of \(V_{t}\) is generated by

$$\begin{aligned} F_{Q}^{-1}(U):={\left\{ \begin{array}{ll} C_{0}J(U), &{} Q\le Q_{max}\\ C_{0}F_{\mathcal {X}_{d+2Q}^{2}}^{-1}(U), &{} Q> Q_{max} \end{array}\right. } \end{aligned}$$
(29)

where J(.) represents an interpolation rule based on \(H_{Q}^{-1}(.)\), and \(F_{\mathcal {X}_{d+2Q}^{2}}^{-1}(.)\) is the inverse of the noncentral chi-square cumulative distribution function.

The authors suggested two interpolations: the linear interpolation and the monotone cubic Hermite spline interpolation. Here, we prefer the latter, since it is much more accurate with the same number of points in the cache. We summarize the algorithm of the NCI method as Algorithm 2.

Algorithm 2
figure e

NCI method

As we can see, the accuracy of the NCI method relies on the parameter \(Q_{max}\) and the size of the uniform grid \(\mathcal {U}\). In our numerical test, for very high precision, we set \(Q_{max}=20\) and \(m=10000\), where m is the size of \(\mathcal {U}\), such that \(\mathcal {U}=\{0,1/m,2/m.,..,(m-1)/m,1-\delta \}\), with \(\delta =10^{-15}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C. Multilevel Monte Carlo simulation for the Heston stochastic volatility model. Adv Comput Math 49, 81 (2023). https://doi.org/10.1007/s10444-023-10076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10076-6

Keywords

Mathematics Subject Classification (2010)

Navigation