Skip to main content
Log in

Pentafluorobenzylpyridinium: new thermometer ion for characterizing the ions produced by collisional activation during tandem mass spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this study, pentafluorobenzylpyridinium (F5-BnPy+), which has the highest dissociation energy among the reported benzylpyridinium thermometer ion, is proposed to characterize the internal energy distributions of ions activated by higher energy collisional dissociation (HCD) and ion-trap collision-induced dissociation (CID) during tandem mass spectrometry. The dissociation threshold energies of F5-BnPy+ was determined using quantum chemistry calculations at the CCSD(T)/6-311++G(d,p)//M06-2X-D3/6-311++G(d,p) level of theory, and the appearance energies for ion dissociation in HCD and ion-trap CID were estimated using Rice–Ramsperger–Kassel–Marcus theory. The main differences between HCD and ion-trap CID are the collision energies used and the timescales of collisional activation. For both HCD and ion-trap CID, the average internal energy of the ions increased with increasing collision energy. In contrast, the average value for the internal energy of the ions activated by ion-trap CID was lower than that of ions activated by HCD, probably because of the smaller collisional energy and longer activation time of the ion-trap CID experiments. The reported method will aid in the determination of the optimum tandem mass spectrometry parameters for the analysis of small molecules such as metabolites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. A. Revesz, H. Hever, A. Steckel, G. Schlosser, D. Szabo, K. Vekey, L. Drahos, Collision energies: optimization strategies for bottom-up proteomics. Mass Spectrom. Rev. 42, 1261–1299 (2023)

    Article  CAS  PubMed  Google Scholar 

  2. J.K. Diedrich, A.F. Pinto, J.R. Yates III., Energy dependence of HCD on peptide fragmentation: stepped collisional energy finds the sweet spot. J. Am. Soc. Mass Spectrom. 24, 1690–1699 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. S.A. McLuckey, D.E. Goeringer, Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997)

    Article  CAS  Google Scholar 

  4. J.V. Olsen, B. Macek, O. Lange, A. Makarov, S. Horning, M. Mann, Higher-energy C-trap dissociation (HCD) for peptide modification analysis. Nat. Methods 4, 709–712 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. D. Szabo, G. Schlosser, K. Vekey, L. Drahos, A. Revesz, Collision energies on QTof and orbitrap instruments: how to make proteomics measurements comparable? J. Mass Spectrom. 56, e4693 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. M.P. Jedrychowski, E.L. Huttlin, W. Haas, M.E. Sowa, R. Rad, S.P. Gygi, Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol. Cell. Proteom. 10(M111), 009910 (2011)

    Google Scholar 

  7. G. Chen, R.G. Cooks, D.M. Bunk, M.J. Welch, J.R. Christie, Partitioning of kinetic energy to internal energy in the low energy collision-induced dissociations of proton-bound dimers of polypeptides. Int. J. Mass Spectrom. 185(186/187), 75–90 (1999)

    Article  Google Scholar 

  8. V. Gabelica, M. Karas, E. De Pauw, Calibration of ion effective temperatures achieved by resonant activation in a quadrupole ion trap. Anal. Chem. 75, 5125–5159 (2003)

    Article  Google Scholar 

  9. F. Ichou, A. Schwarzenberg, D. Lesage, S. Alves, C. Junot, X. Machuron-Mandard, J.C. Tabet, Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. J. Mass Spectrom. 49, 498–508 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. H.I. Kenttamaa, R.G. Cooks, Internal energy distributions acquired through collisional activation at low and high energies. Int. J. Mass Spectrom. Ion Proc. 64, 79–83 (1985)

    Article  CAS  Google Scholar 

  11. V.H. Wysocki, H.I. Kenttamaa, R.G. Cooks, Internal energy distributions of isolated ions after activation by various methods. Int. J. Mass Spectrom. Ion Proc. 75, 181–208 (1987)

    Article  CAS  Google Scholar 

  12. R.G. Cooks, T. Ast, B. Kralj, V. Kramer, D. Zigon, Internal energy distributions deposited in doubly and singly charged tungsten hexacarbonyl ions generated by charge stripping, electron impact, and charge exchange. J. Am. Soc. Mass Spectrom. 1, 16–27 (1990)

    Article  CAS  PubMed  Google Scholar 

  13. C. Collette, E. De Pauw, Calibration of the internal energy distribution of ions produced by electrospray. Rapid Commun. Mass Spectrom. 12, 165–170 (1998)

    Article  CAS  Google Scholar 

  14. R. Rahrt, T. Auth, M. Demireva, P.B. Armentrout, K. Koszinowski, Benzhydrylpyridinium ions: a new class of thermometer ions for the characterization of electrospray-ionization mass spectrometers. Anal. Chem. 91, 11703–11711 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. D. Asakawa, K. Saikusa, Characterization of the internal energy of ions produced by electrospray ionization using substituted benzyl ammonium thermometer ions. J. Am. Soc. Mass Spectrom. 33, 1548–1554 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. D. Asakawa, Phenyl sulfate derivatives: new thermometer ions for characterization of internal energy of negative ions produced by electrospray ionization. J. Am. Soc. Mass Spectrom. 34, 435–440 (2023)

    Article  CAS  PubMed  Google Scholar 

  17. C. Collette, L. Drahos, E.D. De Pauw, K. Vekey, Comparison of the internal energy distributions of ions produced by different electrospray sources. Rapid Commun. Mass Spectrom. 12, 1673–1678 (1998)

    Article  CAS  Google Scholar 

  18. V. Gabelica, E. De Pauw, Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 24, 566–587 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. D. Touboul, M.C. Jecklin, R. Zenobi, Ion internal energy distributions validate the charge residue model for small molecule ion formation by spray methods. Rapid Commun. Mass Spectrom. 22, 1062–1068 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. K.V. Barylyuk, K. Chingin, R.M. Balabin, R. Zenobi, Fragmentation of benzylpyridinium “thermometer” ions and its effect on the accuracy of internal energy calibration. J. Am. Soc. Mass Spectrom. 21, 172–177 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. D. Morsa, V. Gabelica, E. De Pauw, Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1384–1393 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. J.E. Carpenter, C.P. McNary, A. Furin, A.F. Sweeney, P.B. Armentrout, How hot are your ions really? A threshold collision-induced dissociation study of substituted benzylpyridinium “thermometer” ions. J. Am. Soc. Mass Spectrom. 28, 1876–1888 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. M.T. Rodgers, K.M. Ervin, P.B. Armentrout, Statistical modeling of collision-induced dissociation thresholds. J. Chem. Phys. 106, 4499–4508 (1997)

    Article  CAS  Google Scholar 

  24. D. Asakawa, H. Mizuno, E. Sugiyama, K. Todoroki, Fragmentation study of tryptophan-derived metabolites induced by electrospray ionization mass spectrometry for highly sensitive analysis. Analyst 146, 2292–2300 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. D. Asakawa, E. Sugiyama, H. Mizuno, K. Todoroki, Study of substituted phenethylamine fragmentation induced by electrospray ionization mass spectrometry and its application for highly sensitive analysis of neurotransmitters in biological samples. J. Am. Soc. Mass Spectrom. 32, 2144–2152 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. L.L. Lopez, P.R. Tiller, M.W. Senko, J.C. Schwartz, Automated strategies for obtaining standardized collisionally induced dissociation spectra on a benchtop ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 13, 663–668 (1999)

    Article  CAS  Google Scholar 

  27. M.J.T. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, Gaussian 16; Revision A.03 (Gaussian Inc, Wallingford, 2016)

    Google Scholar 

  28. Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2007)

    Article  Google Scholar 

  29. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19, 32184–32215 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. L. Drahos, K. Vekey, MassKinetics: a theoretical model of mass spectra incorporating physical processes, reaction kinetics and mathematical descriptions. J. Mass Spectrom. 36, 237–263 (2001)

    Article  CAS  PubMed  Google Scholar 

  32. E.L. Zins, D. Rondeau, P. Karoyan, C. Fosse, S. Rochut, C. Pepe, Investigations of the fragmentation pathways of benzylpyridinium ions under ESI/MS conditions. J. Mass Spectrom. 44, 1668–1675 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. E.L. Zins, C. Pepe, D. Schroder, Energy-dependent dissociation of benzylpyridinium ions in an ion-trap mass spectrometer. J. Mass Spectrom. 45, 1253–1260 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. F. Muntean, P.B. Armentrout, Guided ion beam study of collision-induced dissociation dynamics: integral and differential cross sections. J. Chem. Phys. 115, 1213–1228 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Naoki Asao of Shinshu University for the synthesis of CF3-BnPy+ and F5-BnPy+. The syntheses of CF3-BnPy+ and F5-BnPy+ were conducted at Shinshu University, supported by the Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)” of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT). Proposal Number: JPMXP1222SH-031. Molecular structure computations were performed at the Research Center for Computational Science in Okazaki, Japan (project nos. 23-IMS-C066 and 22-IMS-C074). This work was supported by JSPS KAKENHI (grant number 23H01996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Asakawa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 465 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asakawa, D., Saikusa, K. Pentafluorobenzylpyridinium: new thermometer ion for characterizing the ions produced by collisional activation during tandem mass spectrometry. ANAL. SCI. 39, 2031–2039 (2023). https://doi.org/10.1007/s44211-023-00419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00419-0

Keywords

Navigation