Skip to main content
Log in

Changes in spatiotemporal drought characteristics from 1961 to 2017 in northeastern maize-growing regions, China

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

A drought is a disaster that poses great threats to maize production. Thus, it is vital to study the spatiotemporal evolution of the standardized precipitation evapotranspiration index (SPEI) in the maize-growing regions in Northeast China (MGRNC). Here, we use the meteorological data of each growth stage from 1961 to 2017. This work aimed to analyze the spatiotemporal variation characteristics of the SPEI in MGRNC using the Mann–Kendall (MK) trend test, MK mutation point test, and Morlet wavelet method. The results indicated that from 1961 to 2017, the average SPEI values in Liaoning and Eastern Inner Mongolia showed a downward trend (the linear trend rates were − 0.02/10a and − 0.04/10a, respectively); however, no clear trend was observed in SPEI values in Heilongjiang and Jilin. There was a main cycle of approximately 20 a and a subcycle of approximately 7–10a for SPEI values in the whole growth stage and the sowing–seedling stage in MGRNC from 1961 to 2017, while the SPEI changes in the other three growth stages were inconsistent with the whole growth stage. The spatial distribution pattern of SPEI values decreased obviously from northeast to southwest during the whole growing stage. The drought frequencies during the different growth stages indicated that it was relatively dry at the heading–flowering stage. With the development of the growth stage, the frequency of droughts decreased significantly. The values of drought frequency and relative drought area for each sub-region in the study area occurred in the following order: Eastern Inner Mongolia > Jilin > Liaoning > Heilongjiang. The frequencies of mild to moderate droughts were 48.16%, 39.08%, 38.41%, and 37.3%, respectively. Identifying the spatiotemporal pattern of droughts in maize areas can provide scientific information for decision-makers to form strategies to withstand droughts and prevent disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Inquiries about data availability should be directed to the authors.

References

  • Beguería S, Vicente-Serrano SM, Reig F et al (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  ADS  Google Scholar 

  • Ben Abdelmalek M, Nouiri I (2020) Study of trends and mapping of drought events in Tunisia and their impacts on agricultural production. Sci Total Environ 734:139311. https://doi.org/10.1016/j.scitotenv.2020.139311

    Article  CAS  PubMed  ADS  Google Scholar 

  • Byakatonda J, Parida BP, Moalafhi DB et al (2018) Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmos Res 213(7):492–508. https://doi.org/10.1016/j.atmosres.2018.07.002

    Article  Google Scholar 

  • Cai F, Zhang Y, Mi N, Ming H, Zhang S, Zhang H, Zhao X (2020) Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree. Agric Water Manag. https://doi.org/10.1016/j.agwat.2020.106379

    Article  Google Scholar 

  • Chen X, Mo X, Zhang Y et al (2019a) Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain. Ecol Indic 104:347–356. https://doi.org/10.1016/j.ecolind.2019.05.017

    Article  CAS  Google Scholar 

  • Chen S, Gan TY, Tan XZ et al (2019b) Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Clim Dyn 53(1–2):737–757. https://doi.org/10.1007/s00382-018-04611-1

    Article  Google Scholar 

  • China Statistics Press (2011)

  • Edossa DC, Woyessa YE, Welderufael WA (2016) Spatiotemporal analysis of droughts using self-calibrating Palmer’s Drought Severity Index in the central region of South Africa. Theor Appl Climatol 126(3):643–657. https://doi.org/10.1007/s00704-015-1604-x

    Article  ADS  Google Scholar 

  • El-Shemy HA, Yin G, Gu J, Zhang F, Hao L, Cong P, Liu Z (2014) Maize yield response to water supply and fertilizer input in a semi-arid environment of Northeast China. PLoS ONE. https://doi.org/10.1371/journal.pone.0086099

    Article  Google Scholar 

  • Gao Z, Feng H-Y, Liang X-G, Zhang L, Lin S, Zhao X, Zhou S-L (2018) Limits to maize productivity in the North China Plain: a comparison analysis for spring and summer maize. Field Crop Res 228:39–47. https://doi.org/10.1016/j.fcr.2018.08.022

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Change 100:172–182

    Article  ADS  Google Scholar 

  • Guo E, Zhang J, Wang Y et al (2019) Spatiotemporal variations of extreme climate events in Northeast China during 1960–2014. Ecol Ind 96:669–683

    Article  Google Scholar 

  • He B, Chang J, Wang Y, Wang Y, Zhou S, Chen C (2021) Spatio-temporal evolution and non-stationary characteristics of meteorological drought in inland arid areas. Ecol Ind 126:107644

    Article  Google Scholar 

  • Huang T, Pang Z (2010) Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeol J 19(1):177–186. https://doi.org/10.1007/s10040-010-0643-8

    Article  CAS  ADS  Google Scholar 

  • Huang H-Y, Qi F-H, Chen J, Yao Z-H (2002) A wavelet-based interpolation of medical images. Acta Autom Sinica 28(5):722–728

    MathSciNet  Google Scholar 

  • Huang S, Huang Q, Chang J et al (2015) Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin, China. J Hydrol 530:127–136

    Article  ADS  Google Scholar 

  • Huimean F, Yusop Z, Yusof F (2018) Drought analysis and water resource availability using standardised precipitation evapotranspiration index. Atmos Res 201(3):102–115. https://doi.org/10.1016/j.atmosres.2017.10.014

    Article  Google Scholar 

  • Ji L, Wu Y, Ma J, Song C, Zhu Z, Zhao A (2022) Spatio-temporal variations and drought of spring maize in Northeast China between 2002 and 2020. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-24502-7

    Article  Google Scholar 

  • Jiang XY, Liu SH, Ma MM, Zhang J (2008) A wavelet analysis of temperature time series in Northeast China during the last 100 years. Adv Clim Change Res 4(2):1673–1719 (in Chinese)

    Google Scholar 

  • Kambombe O, Ngongondo C, Eneya L et al (2021) Spatio-temporal analysis of droughts in the Lake Chilwa Basin, Malawi. Theor Appl Climatol 144(3):1219–1231

    Article  ADS  Google Scholar 

  • Kendall M (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Lau K-M, Weng H (1995) Climate signal detection using wavelet transform: How to make a time series sing. Bull Am Meteor Soc 76(12):2391–2402

    Article  ADS  Google Scholar 

  • Li X, Li Y, Chen A et al (2019) The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric for Meteorol 269:239–248. https://doi.org/10.1016/j.agrformet.2019.01.036

    Article  ADS  Google Scholar 

  • Li K, Tong Z, Liu X et al (2020) Quantitative assessment and driving force analysis of vegetation drought risk to climate change: methodology and application in Northeast China. Agric for Meteorol 282:107865

    Article  Google Scholar 

  • Li E, Zhao J, Pullens JWM et al (2021) The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.152461

    Article  PubMed  PubMed Central  Google Scholar 

  • Li E, Zhao J, Zhang W, Yang X (2023) Spatial-temporal patterns of high-temperature and drought during the maize growing season under current and future climate changes in Northeast China. J Sci Food Agric. https://doi.org/10.1002/jsfa.12650

    Article  PubMed  Google Scholar 

  • Liu HT, Shang J, Pu XJ (2018) Impacts of urbanization on regional CO2 emissions based on STIRPAT time lag effect model. Modern Manage 38(2):76–79

    Google Scholar 

  • Lobell DB, Deines JM, Di Tommaso S (2020) Changes in the drought sensitivity of US maize yields Nat. Food 1:729–735

    Google Scholar 

  • Ma Z, Fu C (2006) Some evidence of drying trend over northern China from 1951 to 2004. Chin Sci Bull 51(23):2913–2925. https://doi.org/10.1007/s11434-006-2159-0

    Article  Google Scholar 

  • Ma B, Zhang B, Jia L, Huang H (2020) Conditional distribution selection for SPEI-daily and its revealed meteorological drought characteristics in China from 1961 to 2017. Atmos Res 246:105108

    Article  Google Scholar 

  • Mahmood Agha OMA, Al-Aqeeli YH (2021) Analysis of the standardized precipitation evapotranspiration index over Iraq and its relationship with the arctic oscillation index. Hydrol Sci J 66(2):278–288

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric test against trend. Econometrica 13:245–259. https://doi.org/10.1016/j.annrmp.2004.07.001

    Article  MathSciNet  Google Scholar 

  • Marvel K, Cook BI, Bonfils CJW et al (2019) Twentieth-century hydroclimate changes consistent with human influence. Nature 569(7754):59–65

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ming B, Guo Y-Q, Tao H-B, Liu G-Z, Li S-K, Wang P (2015) SPEIPM-based research on drought impact on maize yield in North China Plain. J Integr Agric 14(4):660–669. https://doi.org/10.1016/s2095-3119(14)60778-4

    Article  Google Scholar 

  • Mohammed S, Alsafadi K, Enaruvbe GO et al (2022) Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary. Sci Rep 12(1):1–19

    Article  Google Scholar 

  • Nakken M (1999) Wavelet analysis of rainfall–runoff variability isolating climatic from anthropogenic patterns. Environ Model Softw 14(4):283–295

    Article  Google Scholar 

  • Nason GP, Sapatinas T (2002) Wavelet packet transfer function modelling of nonstationary time series. Stat Comput 12(1):45–56

    Article  MathSciNet  Google Scholar 

  • Nuccio ML, Wu J, Mowers R et al (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33(8):862–869

    Article  CAS  PubMed  Google Scholar 

  • Palmer WC (1965) Meteorological drought, Res. Paper No. 45. Weather Bureau,Washington, DC

  • Pei W, Fu Q, Liu D, Li T (2019) A drought index for rainfed agriculture: the standardized precipitation crop evapotranspiration index (SPCEI). Hydrol Process 33(5):803–815

    Article  ADS  Google Scholar 

  • Piao S, Ciais P, Huang Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rashid MM, Beecham S (2019) Development of a non-stationary standardized precipitation Index and its application to a South Australian climate. Sci Total Environ 657:882–892. https://doi.org/10.1016/j.scitotenv.2018.12.052

    Article  CAS  PubMed  ADS  Google Scholar 

  • Scaini A, Sánchez N, Vicente-Serrano SM et al (2015) SMOS-derived soil moisture anomalies and drought indices: a comparative analysis using in situ measurements. Hydrol Process 29(3):373–383

    Article  ADS  Google Scholar 

  • Sehgal V, Gaur N, Mohanty BP (2021) Global flash drought monitoring using surface soil moisture. Water Resour Res 57(9):e2021WR029901

    Article  ADS  Google Scholar 

  • Sein ZMM, Zhi X, Ogou FK et al (2021) Spatio-temporal analysis of drought variability in Myanmar based on the standardized precipitation evapotranspiration index (SPEI) and its impact on crop production. Agronomy 11(9):1691

    Article  Google Scholar 

  • Shu SJ, Wang Y, Xiong AY (2007) Estimation and analysis for geographic and orographi influences on precipitation distribution in China. Chin J Geophys 50(6):1703–1712 (in Chinese)

    Google Scholar 

  • Song XY, Song SB, Sun WY et al (2015) Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos Res 157(4):137–152. https://doi.org/10.1016/j.atmosres.2015.01.022

    Article  Google Scholar 

  • Song Y, Guo Z, Lu Y et al (2017) Pixel-level spatiotemporal analyses of vegetation fractional coverage variation and its influential factors in a desert steppe: a case study in Inner Mongolia, China. Water 9(7):478

    Article  Google Scholar 

  • Spinoni J, Naumann G, Carrao H et al (2014) World drought frequency, duration, and severity for 1951–2010. Int J Climatol 34:2792–2804. https://doi.org/10.1002/joc.3875

    Article  Google Scholar 

  • Sun FH, Yuan J, Lu S (2006) The change and test of climate in Northeast China over the last 100 years. Clim Environ Res 1:101–108 (in Chinese)

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78

    Article  ADS  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  ADS  Google Scholar 

  • Wang Q, Shi P, Lei T, Geng G, Liu J, Mo X, Wu J (2015) The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI. Int J Climatol 35(13):3760–3769. https://doi.org/10.1002/joc.4244

    Article  ADS  Google Scholar 

  • Wang C, Linderholm HW, Song Y, Wang F, Liu Y, Tian J, Ren G (2020a) Impacts of drought on maize and soybean production in northeast China during the past five decades. Int J Environ Res Public Health 17(7):2459

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang P, Liang S, Zhu Y, Khan J, Fang S (2020b) Monitoring maize growth on the North China Plain using a hybrid genetic algorithm-based back-propagation neural network model. Comput Electron Agric. https://doi.org/10.1016/j.compag.2020.105238

    Article  Google Scholar 

  • Wen P-F, He J, Ning F, Wang R, Zhang Y-H, Li J (2019) Estimating leaf nitrogen concentration considering unsynchronized maize growth stages with canopy hyperspectral technique. Ecol Ind. https://doi.org/10.1016/j.ecolind.2019.105590

    Article  Google Scholar 

  • Wu X, Wang P, Huo Z et al (2018) Crop drought identification index for winter wheat based on evapotranspiration in the Huang-Huai-Hai Plain, China. Agric Ecosyst Environ 263:18–30. https://doi.org/10.1016/j.agee.2018.05.001

    Article  Google Scholar 

  • Wu B, Ma Z, Yan N (2020) Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens Environ. https://doi.org/10.1016/j.rse.2020.111813

    Article  PubMed  Google Scholar 

  • Yan H, Wang S-Q, Wang J-B, Lu H-Q, Guo A-H, Zhu Z-C, Shugart HH (2016) Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982–2011 by using PDSI indices and agriculture drought survey data. J Geophys Res Atmos 121(5):2283–2298. https://doi.org/10.1002/2015jd024285

    Article  ADS  Google Scholar 

  • Yang G, Shao W, Wang H et al (2016) Drought evolution characteristics and attribution analysis in northeast China. Proc Eng 2016(154):749–756

    Article  Google Scholar 

  • Yao N, Li Y, Dong QG, Li L, Peng L, Feng H (2020) Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China. Land Degrad Dev 31(2):266–282

    Article  Google Scholar 

  • Yu L, Zhou S, Zhao X et al (2022) Evapotranspiration partitioning based on leaf and ecosystem water use efficiency. Water Resour Res 58(9):e2021WR030629

    Article  ADS  Google Scholar 

  • Zeng R, Li Z, Shi Y et al (2021) Natural variation in a type-A response regulator confers maize chilling tolerance. Nat Community 12:4713. https://doi.org/10.1038/s41467-021-25001-y

    Article  CAS  ADS  Google Scholar 

  • Zhang B, Zhao X, Jin J et al (2015) Development and evaluation of a physically based multiscalar drought index: the standardized moisture anomaly index. J Geophys Res Atmos 120(22):11575–11588

    Article  ADS  Google Scholar 

  • Zhang X, Pan X, Lin Xu et al (2017) Spatio-temporal characteristics of Inner Mongolia drought from 1960 to 2015 based on precipitation evaporation index. Agric Eng 33(15):190–199

    Google Scholar 

  • Zhang Y, Li G, Ge J et al (2019) sc_PDSI is more sensitive to precipitation than to reference evapotranspiration in China during the time period 1951–2015. Ecol Ind 96:448–457. https://doi.org/10.1016/j.ecolind.2018.09.033

    Article  Google Scholar 

  • Zhang H, Song J, Wang G et al (2021) Spatiotemporal characteristic and forecast of drought in northern Xinjiang, China. Ecol Ind 127:107712

    Article  Google Scholar 

  • Zhao J, Yang X, Dai S, Lv S, Wang J (2015) Increased utilization of lengthening growing season and warming temperatures by adjusting sowing dates and cultivar selection for spring maize in Northeast China. Eur J Agron 67:12–19. https://doi.org/10.1016/j.eja.2015.03.006

    Article  Google Scholar 

  • Zhao R, Wang H, Chen J et al (2021) Quantitative analysis of nonlinear climate change impact on drought based on the standardized precipitation and evapotranspiration index. Ecol Ind 121:107107

    Article  Google Scholar 

  • Zhi-Qing J, Da-Wei Z (2008) Impacts of changes in climate and its variability on food production in Northeast China. Acta Agron Sin 34(9):1588–1597

    Article  Google Scholar 

  • Zhou W, Guan K, Peng B et al (2020) Connections between the hydrological cycle and crop yield in the rainfed US Corn Belt. J Hydrol 590:125398

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported partially by the Natural Science Foundation of Liaoning Province (2021-MS-233), Key R&D projects in Liaoning Province (agriculture and industrialization) (2021JH2/10200022), and the National Postdoctoral Grant Program (2019M661128).

Funding

This research has been supported partially by the Natural Science Foundation of Liaoning Province (2021-MS-233), Key R&D projects in Liaoning Province (agriculture and industrialization) (2021JH2/10200022).

Author information

Authors and Affiliations

Authors

Contributions

XG and XW designed and initiated the experiments; DG wrote the article and collected the data; DG processed the data and prepared the figures; XG and XW helped revise the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaodong Gao or Xinguang Wei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 2414 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, D., Gao, X. & Wei, X. Changes in spatiotemporal drought characteristics from 1961 to 2017 in northeastern maize-growing regions, China. Irrig Sci 42, 163–177 (2024). https://doi.org/10.1007/s00271-023-00893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-023-00893-4

Navigation