Skip to main content
Log in

Site-Directed Fluorescence Labeling (SDFL): TrIQ Methods Provide Insights Using the Fluorescent Probe Bimane

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

This review is in honor of Professor Wayne Hubbell’s 80th birthday, and his many contributions to the philosophy and practice of science. He continues to pioneer the use of site-directed spin labeling (SDSL) as a powerful tool for studying protein structure and dynamics. Inspired by his efforts, our lab has worked to develop site-directed fluorescence labeling (SDFL) as a complementary approach to SDSL. Throughout this process, we have emulated many of the novel methods and concepts Dr. Hubbell and his colleagues used during their development of SDSL. Some of our approaches are discussed here, not in a comprehensive or exhaustive way, but to highlight SDFL methods we have found to be robust, reproducible, and relatively easy to use. Specifically, we will focus on the development and application of SDFL using the fluorescent probe bimane, and how the unique properties of bimane can be exploited to glean information about protein structure and function. We also review past examples of how we have used bimane and SDFL to investigate the activation of G protein-coupled receptors (GPCRs) and their interaction with key binding partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data are contained within the manuscript and reference papers. Numerical values shown in the plots can be obtained upon request.

References

  1. A.M.J. Brunette, D.L. Farrens, Biochemistry (2014). https://doi.org/10.1021/bi500493r

    Article  Google Scholar 

  2. J. Skjold-Jorgensen, V.K. Bhatia, J. Vind, A. Svendsen, M.J. Bjerrum, D. Farrens, Biochemistry 54(27), 4186–4196 (2015). https://doi.org/10.1021/acs.biochem.5b00328

    Article  CAS  PubMed  Google Scholar 

  3. S.E. Mansoor, M.A. Dewitt, D.L. Farrens, Biochemistry 49(45), 9722–9731 (2010). https://doi.org/10.1021/bi100907m

    Article  CAS  PubMed  Google Scholar 

  4. E.M. Kosower, N.S. Kosower, Methods Enzymol. 251, 133–148 (1995). https://doi.org/10.1016/0076-6879(95)51117-2

    Article  CAS  PubMed  Google Scholar 

  5. S.E. Mansoor, D.L. Farrens, Biochemistry 43(29), 9426–9438 (2004). https://doi.org/10.1021/bi036259m

    Article  CAS  PubMed  Google Scholar 

  6. E.M. Kosower, Kanety, H., Dodluk, H., and Hermolin, J., J. Phys. Chem. 86, 1270–1277 (1982).

  7. E.M. Kosower, Giniger, R., Radkowsky, A., Hebel, D., and Shusterman, A. J. Phys. Chem. 90, 5552–5557 (1986).

  8. S.E. Mansoor, H.S. McHaourab, D.L. Farrens, Biochemistry 38(49), 16383–16393 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. S.E. Mansoor, H.S. McHaourab, D.L. Farrens, Biochemistry 41(8), 2475–2484 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. E. Sato, Sakashita, M., Kanaoka, Y., and Kosower, E. M., Bioorg. Chem., 16, 298–306 (1988).

  11. P. Siders, Cave, R. J., and Marcus, R. A. , J. Chem. Phys., 81, 5613–5624 (1984).

  12. G.L. Closs, J.R. Miller, Science 240(4851), 440–447 (1988). https://doi.org/10.1126/science.240.4851.440

    Article  CAS  PubMed  Google Scholar 

  13. R.D. Spencer, Fluorescence lifetimes: theory, instrumentation, and application of nanosecond fluorometry. , Department of Chemistry, University of Illinois at Urbana- Champaign., 1970.

  14. R.D.W. Spencer, G., Thermodynamics and kinetics of the intramolecular complex in flavin-adenine dinucleotide, Structure and function of oxidation-reduction enzymes; proceedings of the Wenner-Gren symposium held at the Wenner-Gren Center, Stockholm, 23–27 August, 1970., Pergamon Press1972, pp. 393–399.

  15. J.R. Lakowicz, SpringerLink, Principles of fluorescence spectroscopy (Springer, New York, 2006)

    Book  Google Scholar 

  16. T.D. Dunham, D.L. Farrens, J. Biol. Chem. 274(3), 1683–1690 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. J.F. Fay, D.L. Farrens, J. Biol. Chem. 287(40), 33873–33882 (2012). https://doi.org/10.1074/jbc.M112.352328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.F. Fay, D.L. Farrens, Proc. Natl. Acad. Sci. U.S.A. 112(27), 8469–8474 (2015). https://doi.org/10.1073/pnas.1500895112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Tsukamoto, D.L. Farrens, M. Koyanagi, A. Terakita, J. Biol. Chem. 284(31), 20676–20683 (2009). https://doi.org/10.1074/jbc.M109.016212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. X. Yao, C. Parnot, X. Deupi, V.R. Ratnala, G. Swaminath, D. Farrens, B. Kobilka, Nat. Chem. Biol. 2(8), 417–422 (2006). https://doi.org/10.1038/nchembio801

    Article  CAS  PubMed  Google Scholar 

  21. C.T. Schafer, J.F. Fay, J.M. Janz, D.L. Farrens, Proc. Natl. Acad. Sci. U.S.A. 113(42), 11961–11966 (2016). https://doi.org/10.1073/pnas.1606347113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Tsukamoto, D.L. Farrens, J. Biol. Chem. 288(39), 28207–28216 (2013). https://doi.org/10.1074/jbc.M113.472464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.E. Sommer, W.C. Smith, D.L. Farrens, J. Biol. Chem. 281(14), 9407–9417 (2006). https://doi.org/10.1074/jbc.M510037200

    Article  CAS  PubMed  Google Scholar 

  24. M.E. Sommer, D.L. Farrens, Vision. Res. 46(27), 4532–4546 (2006). https://doi.org/10.1016/j.visres.2006.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M.E. Sommer, D.L. Farrens, J.H. McDowell, L.A. Weber, W.C. Smith, J. Biol. Chem. 282(35), 25560–25568 (2007). https://doi.org/10.1074/jbc.M702155200

    Article  CAS  PubMed  Google Scholar 

  26. A. Sinha, A.M. Jones Brunette, J.F. Fay, C.T. Schafer, D.L. Farrens, Biochemistry, 53(20), 3294–3307 (2014). https://doi.org/10.1021/bi401534y.

  27. J.M. Janz, D.L. Farrens, J. Biol. Chem. 279(28), 29767–29773 (2004). https://doi.org/10.1074/jbc.M402567200

    Article  CAS  PubMed  Google Scholar 

  28. X.J. Yao, G. Velez Ruiz, M.R. Whorton, S.G. Rasmussen, B.T. DeVree, X. Deupi, R.K. Sunahara, B. Kobilka, Proc Natl Acad Sci USA, 106, 9501–9506 (2009). https://doi.org/10.1073/pnas.0811437106.

  29. C.T. Schafer, D.L. Farrens, J. Biol. Chem. 290(7), 4304–4318 (2015). https://doi.org/10.1074/jbc.M114.603134

    Article  CAS  PubMed  Google Scholar 

  30. C.T. Schafer, A. Shumate, D.L. Farrens, J. Biol. Chem. 295(51), 17486–17496 (2020). https://doi.org/10.1074/jbc.RA120.014631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. X. Deupi, P. Edwards, A. Singhal, B. Nickle, D. Oprian, G. Schertler, J. Standfuss, Proc Natl Acad Sci U S A 109(1), 119–124 (2012). https://doi.org/10.1073/pnas.1114089108

    Article  PubMed  Google Scholar 

  32. M. Han, S.O. Smith, T.P. Sakmar, Biochemistry 37(22), 8253–8261 (1998). https://doi.org/10.1021/bi980147r

    Article  CAS  PubMed  Google Scholar 

  33. R. Maeda, M. Hiroshima, T. Yamashita, A. Wada, Y. Sako, Y. Shichida, Y. Imamoto, J. Phys. Chem. B 122(18), 4838–4843 (2018). https://doi.org/10.1021/acs.jpcb.8b02819

    Article  CAS  PubMed  Google Scholar 

  34. S. Sato, B. Jastrzebska, A. Engel, K. Palczewski, V.J. Kefalov, J. Neurosci. 39(2), 212–223 (2019). https://doi.org/10.1523/JNEUROSCI.1980-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Elgeti, R. Kazmin, M. Heck, T. Morizumi, E. Ritter, P. Scheerer, O.P. Ernst, F. Siebert, K.P. Hofmann, F.J. Bartl, J. Am. Chem. Soc. 133(18), 7159–7165 (2011). https://doi.org/10.1021/ja200545n

    Article  CAS  PubMed  Google Scholar 

  36. J.A. Goncalves, K. South, S. Ahuja, E. Zaitseva, C.A. Opefi, M. Eilers, R. Vogel, P.J. Reeves, S.O. Smith, Proc. Natl. Acad. Sci. U.S.A. 107(46), 19861–19866 (2010). https://doi.org/10.1073/pnas.1009405107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. E. Krieger, G. Vriend, J. Comput. Chem. 36(13), 996–1007 (2015). https://doi.org/10.1002/jcc.23899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Nicholson, D.E. Anderson, S. Dao-pin, B.W. Matthews, Biochemistry 30(41), 9816–9828 (1991). https://doi.org/10.1021/bi00105a002

    Article  CAS  PubMed  Google Scholar 

  39. J.J.P. Stewart, J. Comput. Aided Mol. Des. 4(1), 1–103 (1990). https://doi.org/10.1007/BF00128336

    Article  PubMed  Google Scholar 

  40. Y. Gao, H. Hu, S. Ramachandran, J.W. Erickson, R.A. Cerione, G. Skiniotis, Mol. Cell 75(4), 781-790.e783 (2019). https://doi.org/10.1016/j.molcel.2019.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded in part by R01 EY029343, R21 EY027959 and R21 DA043001 (DLF);  also T32 DA7262 and  F31 DA049438 (ADS).

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization, methodology. Investigation: execution, validation and formal analysis of new unpublished data. Writing: original draft and writing, reviewing and editing. Visualization: generated figures. DLF: conceptualization, methodology. Writing: original draft and writing, reviewing and editing. Visualization: generated figures. Supervision, project administration, funding acquisition.

Corresponding author

Correspondence to David L. Farrens.

Ethics declarations

Conflict of Interest

No conflict interests.

Ethical Approval

Not applicable, no human or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumate, A.D., Farrens, D.L. Site-Directed Fluorescence Labeling (SDFL): TrIQ Methods Provide Insights Using the Fluorescent Probe Bimane. Appl Magn Reson 55, 101–126 (2024). https://doi.org/10.1007/s00723-023-01628-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01628-6

Navigation