Skip to main content
Log in

Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 μM, 91.71 ± 0.27 μM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 μM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

References

  1. Dinda B, Silsarma I, Dinda M, Rudrapaula P (2015) Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol 161:255–278. https://doi.org/10.1016/j.jep.2014.12.027

    Article  PubMed  CAS  Google Scholar 

  2. Kamkaen N, Wilkinson JM, Cavanagh HM (2006) Cytotoxic effect of four Thai edible plants on mammalian cell proliferation. Thai Pharma Health Sci J 1:189–195

    Google Scholar 

  3. Luitel H, Rajbhandari M, Kalauni SK, Awale S, Masuda K, Gewali MB (2010) Chemical constituents from Oroxylum indicum (L.) Kurz of Nepalese origin. Scientific World 8:66–68. https://doi.org/10.3126/sw.v8i8.3852

    Article  Google Scholar 

  4. Lawania RD, Mishra A, Gupta R (2010) Oroxylum indicum: a review Pharmacognosy J 2:304–310. https://doi.org/10.1016/S0975-3575(10)80121-X

    Article  Google Scholar 

  5. Jagetia GC (2021) A review on the medicinal and pharmacological properties of traditional ethnomedicinal plant sonopath, Oroxylum indicum. Sinusitis 5:71–89. https://doi.org/10.3390/sinusitis5010009

    Article  Google Scholar 

  6. Hildmann C, Riester D, Schwienhors A (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Microbiol Biotechnol 75:487–497. https://doi.org/10.1007/s00253-007-0911-2

    Article  CAS  Google Scholar 

  7. Colussi C, IIIi B, Spallotta J, Farsetti A, Grasselli A, Mai A, Capogrossi M, Gaetanoa C, (2010) Histone deacetylase inhibitors: keeping momentum for neuromuscular and cardiovascular diseases treatment. Pharmacol Res 62:3–10. https://doi.org/10.1016/j.phrs.2010.02.014

    Article  PubMed  CAS  Google Scholar 

  8. Wang F, Wang C, Wang J, Zou Y, Chen X, Liu T, He B (2019) Nɛ-acetyl lysine derivatives with zinc binding groups as novel HDAC inhibitors. R Soc Open Sci 6:190338–219347. https://doi.org/10.1098/rsos.190338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. McLaughlin F, Thangue NBL (2004) Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 68:1139–1144. https://doi.org/10.1016/j.bcp.2004.05.034

    Article  PubMed  CAS  Google Scholar 

  10. Wang F, Lu W, Zhang T, Dong J, Gao H, Li P, Wang S, Zhang J (2013) Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg Med Chem 21:6973–6980. https://doi.org/10.1016/j.bmc.2013.09.021

    Article  PubMed  CAS  Google Scholar 

  11. Qiu X, Xiao X, Li N, Li Y (2017) Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychoph 72:60–72. https://doi.org/10.1016/j.pnpbp.2016.09.002

    Article  CAS  Google Scholar 

  12. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: What are the cancer relevant targets? Cancer Lett 227:8–21. https://doi.org/10.1016/j.canlet.2008.08.016

    Article  CAS  Google Scholar 

  13. De Ruijter AJM, Gennip VAH, Caron HN, Kemp S, Kuilenburg ABPV (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–739. https://doi.org/10.1042/bj20021321

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zwergel C, Valente S, Jacob C, Mai A (2015) Emerging approaches for histone Deacetylase inhibitor drug discovery. Expert Opin Drug Discov 10:599–613. https://doi.org/10.1517/17460441.2015.1038236

    Article  PubMed  CAS  Google Scholar 

  15. Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F (2017) Design, synthesis, and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024

    Article  PubMed  CAS  Google Scholar 

  16. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. https://doi.org/10.1038/nrd2133

    Article  PubMed  CAS  Google Scholar 

  17. Paris M, Porcelloni M, Binaschi M, Fattori D (2008) Histone deacetylase inhibitors: from bench to clinic. J Med Chem 51:1505–1529. https://doi.org/10.1021/jm7011408

    Article  PubMed  CAS  Google Scholar 

  18. Fishcher A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDACs to treat cognitive disorders. Trends Pharmacol Sci 31:605–617. https://doi.org/10.1016/j.tips.2010.09.003

    Article  CAS  Google Scholar 

  19. Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biol Targets Ther 7:47–60. https://doi.org/10.2147/BTT.S29965

    Article  CAS  Google Scholar 

  20. Linciano P, Benedetti R, Pinzi L, Russo F, Chianese U, Sorbi C, Altucci L, Rastelli G, Brasili L, Franchini S (2021) Investigation of the effect of different linker chemotypes on the inhibition of histone deacetylases (HDACs). Bioorg Chem 106:104462. https://doi.org/10.1016/j.bioorg.2020.104462

    Article  PubMed  CAS  Google Scholar 

  21. Abdalla MM (2016) Medicinal significance of naturally occurring cyclopeptides. J Nat Med 70:708–720. https://doi.org/10.1007/s11418-016-1001-5

    Article  PubMed  CAS  Google Scholar 

  22. Son H, Chang IM, Lee SI, Yang HD (2007) Moon HI (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755. https://doi.org/10.1016/j.bmcl.2007.06.060

    Article  PubMed  CAS  Google Scholar 

  23. Kummboonma P, Senawong T, Saenglee S, Yenjai C, Phaosiri C (2017) Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants. Med Chem Res 26:650–661. https://doi.org/10.1007/s00044-017-1785-1

    Article  CAS  Google Scholar 

  24. Berger A, Venturelli S, Kallnischkies M, Böcker A, Busch C, Weilanda T, Noor S, Leischner C, Weiss TS, Lauera UM, Bischoff SC, Bitzer M (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24:977–985. https://doi.org/10.1016/j.jnutbio.2012.07.001

    Article  PubMed  CAS  Google Scholar 

  25. Ali RM, Houghton PJ, Raman A, Hoult JRS (1998) Antimicrobial and anti-inflammatory activities of extracts and constituents of Oroxylum indicum (L.) Vent. Phytomedicine 5:375–381. https://doi.org/10.1016/S0944-7113(98)80020-2

    Article  CAS  Google Scholar 

  26. Santi MD, Bouzidi C, Gorod NS, Puiatti M, Michel S, Grougnet R, Ortega MG (2019) In vitro biological evaluation and molecular docking studies of natural and semisynthetic flavones from Gardenia oudiepe (Rubiaceae) as tyrosinase inhibitors. Bioorg Chem 82:241–245. https://doi.org/10.1016/j.bioorg.2018.10.034

    Article  PubMed  CAS  Google Scholar 

  27. Lee YE, Kodama T, Morita H (2023) Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediates, olivetolic acid, and its alkyl-chain derivatives. J Nat Med 77:298–305. https://doi.org/10.1016/j.bioorg.2020.104370

    Article  PubMed  CAS  Google Scholar 

  28. Babu TH, Manjulatha K, Kumar GS, Hymavathi A, Tiwari AK, Purohit M, Rao JM, Babu KS (2010) Gastroprotective flavonoid constituents from Oroxylum indicum Vent. Bioorg Med Chem Lett 20:117–120. https://doi.org/10.1016/j.bmcl.2009.11.024

    Article  CAS  Google Scholar 

  29. Zou XQ, Peng SM, Hu CP, Tan LF, Yuan Q, Deng HW, Li YJ (2010) Synthesis, characterization and vasculoprotective effects of nitric oxide-donating derivatives of chrysin. Bioorg Med Chem 18:3020–3025. https://doi.org/10.1016/j.bmc.2010.03.056

    Article  PubMed  CAS  Google Scholar 

  30. Babu KS, Babu TH, Srinivas PV, Kishore KH, Murthy USN, Rao JM (2006) Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg Med Chem Lett 16:221–224. https://doi.org/10.1016/j.bmcl.2005.09.009

    Article  CAS  Google Scholar 

  31. Somsakeesit L-o, Senawong T, Kumboonma P, Saenglee S, Samankul A, Senawong G, Yenjai C, Phaosiri C (2020) Influence of side-chain changes on histone Deacetylase inhibitory and cytotoxicity activities of curcuminoid derivatives. Bioorg Med Chem Lett 30:127171–127176. https://doi.org/10.1016/j.bmcl.2020.127171

    Article  PubMed  CAS  Google Scholar 

  32. Asgar MA, Senawong G, Sripa B, Senawong T (2015) Scopoletin potentiates the anti- cancer effects of cisplatin against cholangiocarcinoma cell lines. Bangladesh J Pharmacol 10:69–77. https://doi.org/10.3329/bjp.v10i1.21202

    Article  Google Scholar 

  33. Kattar SD, Surdi LM, Zabierek A, Methot JL, Middleton RE, Hughes B et al (2009) Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI- 1:2) optimization. Bioorg Med Chem Lett 19:1168–1172. https://doi.org/10.1016/j.bmcl.2008.12.083

    Article  PubMed  CAS  Google Scholar 

  34. Chakrabarti A, Oehme I, Witt O, Oliveira G, Sippl W, Romier C, Pierce RT, Jung M (2015) HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci 36:481–492. https://doi.org/10.1016/j.tips.2015.04.013

    Article  PubMed  CAS  Google Scholar 

  35. Ganai SA, Sheikh FA, Baba ZA (2021) Plant flavone chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res 35:823–834. https://doi.org/10.1002/ptr.6869

    Article  PubMed  CAS  Google Scholar 

  36. Asgar MD, Senawong G, Sripa B, Senawong T (2016) Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines. Int J Oncol 18:409–420. https://doi.org/10.3892/ijo.2015.3240

    Article  CAS  Google Scholar 

  37. Namwan N, Senawong G, Phaosiri C, Kumboonma P, Somsakeesit L-O, Samankul A, Leerat C, Senawong T (2022) HDAC inhibitory and anti-cancer activities of curcumin and curcumin derivative CU17 against human lung cancer A549 Cells. Molecules 27(13):4014. https://doi.org/10.3390/molecules27134014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Saenglee S, Senawong G, Jeeunngoi J, Jogloy S, Ketterman A, Sripa B, Senawong T (2020) Peanut testa extracts enhance anticancer effect of cisplatin against human cholangiocarcinoma cells via modulation of histone deacetylase inhibitory activity. Asian Pac J Trop Biomed 10(8):369–378. https://doi.org/10.4103/2221-1691.287163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Fund of Khon Kaen University and the National Science, Research, and Innovation Fund (FF2566). We also would like to thank Mr. Kittisak Poopasith for the excellent NMR data. We were thankful to the Mr. Sookkawath Walunchapruk for the anti-proliferative activity. A graduate fellowship given to La-or Somsakeesit was supported by Rajamangala University of Technology Isan (RMUTI). Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Ministry of Higher Education, Science, Research and Innovation are also gratefully acknowledged.

Funding

This study was supported by Fundamental Fund of Khon Kaen University and the National Science, Research, and Innovation Fund (FF2566).

Author information

Authors and Affiliations

Authors

Contributions

La-or Somsakeesit: isolation, synthesis, structure elucidation, and drafting manuscript. Thanaset Senawong: HDAC inhibitory test and discussion. Gulsiri Senawong and Narissara Namwan: anti-proliferative activity and discussion. Pakit Kumboonma: molecular docking study. Arunta Samankul: western blot analysis. Chavi Yenjai: structure discussion and proofread. Chanokbhorn Phaosiri: concept, experimental design, finding grant, discussion, correction, and proofread.

Corresponding author

Correspondence to Chanokbhorn Phaosiri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somsakeesit, Lo., Senawong, T., Senawong, G. et al. Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors. J Nat Med 78, 236–245 (2024). https://doi.org/10.1007/s11418-023-01758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01758-y

Keywords

Navigation