Skip to main content
Log in

Infinitely Many Solutions for Schrödinger–Kirchhoff-Type Equations Involving the Fractional p(x, ·)-Laplacian

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the existence of infinitely many solutions for Schrödinger–Kirchhoff-type equations involving nonlocal \(p(x, \cdot )\)-fractional Laplacian \(\left\{ {\begin{array}{*{20}{l}} {M({{\sigma }_{{p(x,y)}}}(u))\mathcal{L}_{K}^{{p(x, \cdot )}}(u) = \lambda {{{\left| u \right|}}^{{q(x) - 2}}}u + \mu {{{\left| u \right|}}^{{\gamma (x) - 2}}}u\;}&{{\text{in}}\;\Omega } \\ {u(x) = 0}&{{\text{in}}\;{{\mathbb{R}}^{N}}{\kern 1pt} \backslash {\kern 1pt} \Omega ,} \end{array}} \right.\) where \({{\sigma }_{{p(x,y)}}}(u) = \int_\mathcal{Q} \frac{{{{{\left| {u(x) - u(y)} \right|}}^{{p(x,y)}}}}}{{p(x,y)}}K(x,y)dxdy,\) \(\mathcal{L}_{K}^{{p(x, \cdot )}}\) is a nonlocal operator with singular kernel \(K\), \(\Omega \) is a bounded domain in \({{\mathbb{R}}^{N}}\) with Lipschitz boundary \(\partial \Omega \), \(M:{{\mathbb{R}}^{ + }} \to \mathbb{R}\) is a continuous function, q, \(\gamma \in C(\Omega )\) and \(\lambda ,\mu \) are two parameters. Under some suitable assumptions, we show that the above problem admits infinitely many solutions by applying the Fountain Theorem and the Dual Fountain Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Bahrouni and V. D. Rădulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent,” Discrete Contin. Dyn. Syst. S 11, 379–389 (2018). https://doi.org/10.3934/dcdss.2018021

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Del Pezzo and J. D. Rossi, “Trace for fractional Sobolev spaces with variable exponents,” Adv. Oper. Theory 2, 435–446 (2017). https://doi.org/10.22034/aot.1704-1152

    Article  MathSciNet  MATH  Google Scholar 

  3. U. Kaufmann, J. D. Rossi, and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians,” Electron. J. Qualitative Theory Differ. Equations, No. 76, 1–10 (2017). https://doi.org/10.14232/ejqtde.2017.1.76

    Article  Google Scholar 

  4. D. Applebaum, “Lévy processes—From probability to finance and quantum groups,” Not. Am. Math. Soc. 51, 1336–1347 (2004).

    MATH  Google Scholar 

  5. L. Caffarelli, “Non-local diffusions, drifts and games,” in Nonlinear Partial Differential Equations, Ed. by H. Holden and K. Karlsen, Abel Symposia, Vol. 7 (Springer, Berlin, 2012), pp. 37–52. https://doi.org/10.1007/978-3-642-25361-4_3

  6. R. Metzler and J. Klafter, “The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen. 37, R161–R208 (2004). https://doi.org/10.1088/0305-4470/37/31/r01

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Phys. Lett. A 268, 298–305 (2000). https://doi.org/10.1016/s0375-9601(00)00201-2

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Laskin, “Fractional Schrödinger equation,” Phys. Rev. E 66, 56108 (2002). https://doi.org/10.1103/physreve.66.056108

    Article  MathSciNet  Google Scholar 

  9. K. B. Ali, M. Hsini, K. Kefi, and N. T. Chung, “On a nonlocal fractional p(., .)-Laplacian problem with competing nonlinearities,” Complex Anal. Oper. Theory 13, 1377–1399 (2019). https://doi.org/10.1007/s11785-018-00885-9

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Azroul, A. Benkirane, and M. Shimi, “Existence and multiplicity of solutions for fractional p(x, .)-Kirchhoff-type problems in ℝN,” Appl. Anal. 100, 2029–2048 (2019). https://doi.org/10.1080/00036811.2019.1673373

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Azroul, A. Benkirane, M. Shimi, and M. Srati, “On a class of fractional p(x)-Kirchhoff type problems,” Appl. Anal. 100, 383–402 (2019). https://doi.org/10.1080/00036811.2019.1603372

    Article  MathSciNet  MATH  Google Scholar 

  12. N. T. Chung, “Eigenvalue problems for fractional p(x, y)-Laplacian equations with indefinite weight,” Taiwanese J. Math. 23, 1153–1173 (2019). https://doi.org/10.11650/tjm/190404

    Article  MathSciNet  MATH  Google Scholar 

  13. J. I. Lee, J. Kim, Yu. Kim, and J. Lee, “Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian,” J. Math. Phys. 61, 11505 (2020). https://doi.org/10.1063/1.5111786

    Article  MathSciNet  Google Scholar 

  14. G. Kirchhoff, Mechanik (Teubner, Leipzig, 1883).

    MATH  Google Scholar 

  15. D. Edmunds and J, “Density of smooth functions in W k, p(x)(Ω),” Proc. R. Soc. London, Ser. A 437, 229–236 (1992). https://doi.org/10.1098/rspa.1992.0059

    Article  Google Scholar 

  16. D. E. Edmunds and J. Rákosník, “Sobolev embeddings with variable exponent,” Stud. Math. 143, 267–293 (2000). https://doi.org/10.4064/sm-143-3-267-293

    Article  MathSciNet  MATH  Google Scholar 

  17. X. Fan and D. Zhao, “On the Spaces L p(x)(Ω) and W m, p(x)(Ω),” J. Math. Anal. Appl. 263, 424–446 (2001). https://doi.org/10.1006/jmaa.2000.7617

    Article  MathSciNet  Google Scholar 

  18. E. Azroul, A. Benkirane, and M. Shimi, “General fractional Sobolev space with variable exponent and applications to nonlocal problems,” Adv. Oper. Theory 5, 1512–1540 (2020). https://doi.org/10.1007/s43036-020-00062-w

    Article  MathSciNet  MATH  Google Scholar 

  19. J. F. Zhao, Structure Theory of Banach Spaces (Wuhan Univ. Press, Wuhan, 1991).

    Google Scholar 

  20. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, Vol. 24 (Birkhäuser, Boston, 1996). https://doi.org/10.1007/978-1-4612-4146-1

  21. X. Fan and Q. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlinear Anal.: Theory, Methods Appl. 52, 1843–1852 (2003). https://doi.org/10.1016/s0362-546x(02)00150-5

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mirzapour.

Ethics declarations

The author declares that she has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryam Mirzapour Infinitely Many Solutions for Schrödinger–Kirchhoff-Type Equations Involving the Fractional p(x, ·)-Laplacian. Russ Math. 67, 67–77 (2023). https://doi.org/10.3103/S1066369X23080054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23080054

Keywords:

Navigation