Skip to main content
Log in

The Analysis of the Photogravitational R4BP Under the Combined Effect of Stokes Drag and Oblateness with Variable Mass

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we have studied the existence, locations and stability of the equilibrium points as well as zero velocity curves (ZVCs) under the combined effect of oblateness, radiation pressure and the dissipative force (Stokes drag) in the restricted four-body problem (R4BP) with variable mass when the bigger primary \(m_{1}\) is a source of radiation, second primary \(m_{2}\) is an oblate/prolate spheroid and third primary \(m_{3}\) is a point mass. Jeans’ law and space time transformations of Meshcherskii have been used to derive the equations of motion of the infinitesimal body whose mass is varying. The dynamical behaviour of an infinitesimal body has been investigated under the influence of radiation pressure of bigger primary and oblateness of second primary with Stokes drag. The numerical investigation shows that all the equilibrium points are non-collinear and the collinear equilibrium points do not exist due to the presence of Stokes drag. The effect of oblateness parameter A, radiation parameter \(q\,(0<q<1)\), the proportionality constant \(\alpha \,(0<\alpha \le 2.2)\) occurs in Jeans’ law, parameter due to variation in mass \(\gamma \,(0<\gamma <1)\) and dissipative constant \(k\,(0< k<1)\) have been investigated on the existence, locations of equilibrium points, and their stability. Further, it has been shown that the regions of motion increase for the increasing values of the parameters A, q and \(\alpha\) whereas these regions decrease for the increasing values of the dissipative constant k. We have also explored that all the equilibrium points are unstable for all values of the parameters used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Szebehely, V.: Theory of Orbits, the Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  2. Sharma, R.K.: The linear stability of libration points of the photogravitational restricted three-body problem when the smaller primary is an oblate spheroid. Astrophys. Space Sci. 135, 271–281 (1987). https://doi.org/10.1007/BF00641562

    Article  MATH  Google Scholar 

  3. Suraj, M.S., Mittal, A., Pal, K., Mittal, D.: Stability of the artificial equilibrium points in the low-thrust restricted three-body problem when the smaller primary is an oblate spheroid. Nonlinear Dyn. Syst. Theory. 20(4), 439–450 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Suraj, M.S., Alhowaity, S., Aggarwal, R., Asique, M.C., Mittal, A., Jain, M.: On the topology of basins of convergence linked to libration points in the modified R3BP with oblateness. New Astron. 94, 101776 (2022). https://doi.org/10.1016/j.newast.2022.101776

    Article  Google Scholar 

  5. Singh, J., Emmanuel, A.B.: Stability of triangular points in the photogravitational CR3BP with Poynting-Robertson drag and a smaller triaxial primary. Astrophys. Space Sci. 353, 97–103 (2014). https://doi.org/10.1007/s10509-014-2023-7

    Article  Google Scholar 

  6. Mittal, A., Iqbal, A., Bhatnagar, K.B.: Periodic orbits generated by Lagrangian solutions of the restricted three-body problem when one of the primaries is an oblate body. Astropys. Space Sci. 319, 63–73 (2008). https://doi.org/10.1007/s10509-008-9942-0

    Article  MATH  Google Scholar 

  7. Murray, C.D.: Dynamical effects of drag in the circular restricted three-body problems: I. Location and stability of the Lagrangian equilibrium points. Icarus. 112(2), 465–484 (1994). https://doi.org/10.1006/icar.1994.1198

    Article  Google Scholar 

  8. Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21(8), 2179–2193 (2011). https://doi.org/10.1142/S0218127411029707

    Article  MathSciNet  MATH  Google Scholar 

  9. Arribas, M., Abad, A., Elipe, A., et al.: Equilibria of the symmetric collinear restricted four-body problem with radiation pressure. Astrophys. Space Sci. 361, 84 (2016). https://doi.org/10.1007/s10509-016-2671-x

    Article  MathSciNet  Google Scholar 

  10. Zotos, E.E.: Exploring the location and linear stability of the equilibrium points in the equilateral restricted four-body problem. Int. J. Bifurc. Chaos. 30(10), 2050155 (2020). https://doi.org/10.1142/S0218127420501552

    Article  MathSciNet  MATH  Google Scholar 

  11. Muhammad, S., Duraihem, F.Z., Zotos, E.E.: On the equilibria of the restricted four-body problem with triaxial rigid primaries–I: Oblate bodies. Chaos Solitons Fractals 142, 110500 (2021). https://doi.org/10.1016/j.chaos.2020.110500

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeans, J.H.: Astronomy and Cosmology. Cambridge University Press, Cambridge (1928)

    MATH  Google Scholar 

  13. Meshcherskii, I.V.: Studies on the Mechanics of Bodies of Variable Mass. GITTL, Moscow (1949)

    MATH  Google Scholar 

  14. Shrivastava, A.K., Ishwar, B.: Equations of motion of the restricted problem of three bodies with variable mass. Celestial Mech. 30, 323–328 (1983). https://doi.org/10.1007/BF01232197

    Article  MathSciNet  MATH  Google Scholar 

  15. Lu, T.W.: Analysis on the stability of triangular points in the restricted problem of three-bodies with variable mass. Publ. Purple Mt. Obs. 9(4), 290–296 (1990)

    Google Scholar 

  16. Singh, J., Leke, O.: Stability of the photogravitational restricted three-body problem with variable masses. Astrophys. Space Sci. 326, 305–314 (2010). https://doi.org/10.1007/s10509-009-0253-x

    Article  MATH  Google Scholar 

  17. Zhang, M.J., Zhao, C.Y., Xiong, Y.Q.: On the triangular libration points in photogravitational restricted three-body problem with variable mass. Astrophys. Space Sci. 337, 107–113 (2012). https://doi.org/10.1007/s10509-012-1084-8

    Article  MATH  Google Scholar 

  18. Abouelmagd, E.I., Mostafa, A.: Out-of-plane equilibrium points locations and the forbidden movement regions in the restricted three-body problem with variable mass. Astrophys. Space Sci. 357, 58 (2015). https://doi.org/10.1007/s10509-015-2294-7

    Article  Google Scholar 

  19. Abouelmagd, E.I., Selim, H.H., Minglibayev, M.Z., Kushekbay, A.K.: A new model emerged from the three-body problem within frame of variable mass. Astron. Rep. 65, 1170–1178 (2021). https://doi.org/10.1134/S1063772921110019

    Article  Google Scholar 

  20. Suraj, M.S., Aggarwal, R., Asique, M.C., Mittal, A.: On the modified circular restricted three-body problem with variable mass. New Astron. 84, 101510 (2021). https://doi.org/10.1016/j.newast.2020.101510

    Article  Google Scholar 

  21. Abouelmagd, E.I.: The effect of photogravitational force and oblateness in the perturbed restricted three-body problem. Astrophys. Space Sci. 346, 51–69 (2013). https://doi.org/10.1007/s10509-013-1439-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Liou, J.C., Zook, H.A., Jackson, A.A.: Radiation pressure, Poynting-Robertson drag, and solar wind drag in the restricted three-body problem. Icarus. 116, 186–201 (1995)

    Article  Google Scholar 

  23. Ragos, O., Zafiropoulos, F.A., Vrahatis, M.N.: A numerical study of the influence of the Poynting-Robertson effect on the equilibrium points of the photogravitational restricted three-body problem: II. Out of plane case. Astron. Astrophys. 300, 579–590 (1995)

    Google Scholar 

  24. Jain, M., Aggarwal, R.: A study of non-collinear libration points in restricted three-body problem with Stokes drag effect when smaller primary is an oblate spheroid. Astrophys. Space Sci. 358, 51–58 (2015). https://doi.org/10.1007/s10509-015-2457-6

    Article  Google Scholar 

  25. Kumar, D., Jain, M., Aggarwal, R., Satya, S.K.: Stability of \(L_{4,5}\) in the R3BP under the combined effects of Stokes drag and finite straight segment. Int. J. Math. Trends Technol. 45(3), 200–206 (2017). https://doi.org/10.14445/22315373/IJMTT-V45P526

    Article  Google Scholar 

  26. Vincent, A.E., Taura, J.J., Omale, S.O.: Existence and stability of equilibrium points in the photogravitational restricted four-body problem with Stokes drag effect. Astrophys. Space Sci. 20(364), 183 (2019). https://doi.org/10.1007/s10509-019-3674-1

    Article  MathSciNet  Google Scholar 

  27. Kushvah, B.S., Sharma, J.P., Ishwar, B.: Nonlinear stability in the generalised photogravitational restricted three-body problem with Poynting-Robertson drag. Astrophys. Space Sci. 312, 279–293 (2007). https://doi.org/10.1007/s10509-007-9688-0

    Article  MATH  Google Scholar 

  28. Kumari, R., Kushvah, B.S.: Equilibrium points and zero velocity surfaces in the restricted four-body problem with solar wind drag. Astrophys. Space Sci. 344, 347–359 (2013). https://doi.org/10.1007/s10509-012-1340-y

    Article  MATH  Google Scholar 

  29. Singh, J., Omale, S.O.: Combined effect of Stokes drag, oblateness and radiation pressure on the existence and stability of equilibrium points in the restricted four-body problem. Astrophys. Space Sci. 364, 6 (2019). https://doi.org/10.1007/s10509-019-3494-3

    Article  MathSciNet  Google Scholar 

  30. Mittal, A., Aggarwal, R., Suraj, M.S., Bisht, V.S.: Stability of libration points in the restricted four-body problem with variable mass. Astrophys. Space Sci. 361, 329 (2016). https://doi.org/10.1007/s10509-016-2901-2

    Article  MathSciNet  Google Scholar 

  31. Aggarwal, R., Mittal, A., Suraj, M.S., Bisht, V.S.: The effect of small perturbations in the Coriolis and centrifugal forces on the existence of libration points in the restricted four-body problem with variable mass. Astron. Notes. 339(6), 492–512 (2018). https://doi.org/10.1002/asna.201813411

    Article  Google Scholar 

  32. Suraj, M.S., Mittal, A., Aggarwal, R.: Revealing the existence and stability of equilibrium points in the circular autonomous restricted four-body problem with variable mass. New Astron. 68, 1–9 (2019). https://doi.org/10.1016/j.newast.2018.10.003

    Article  Google Scholar 

  33. Suraj, M.S., Aggarwal, R., Asique, M.C., Mittal, A.: The effect of radiation pressure on the basins of convergence in the restricted four-body problem. Chaos Solitons Fractals 141, 110347 (2020a). https://doi.org/10.1016/j.chaos.2020.110347

    Article  MathSciNet  MATH  Google Scholar 

  34. Mittal, A., Aggarwal, R., Suraj, M.S., Arora, M.: On the photo-gravitational restricted four-body problem with variable mass. Astrophys. Space Sci. 363, 109 (2018). https://doi.org/10.1007/s10509-018-3321-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Hadjidemetriou, J.D.: The restricted planetary 4-body problem. Celest. Mech. 21, 63–71 (1980). https://doi.org/10.1007/BF01230248

    Article  MathSciNet  MATH  Google Scholar 

  36. Malhotra, R.: Orbital resonances in the solar nabula: Strengths and weakness. Icarus. 106, 264–273 (1993). https://doi.org/10.1006/icar.1993.1170

    Article  Google Scholar 

  37. Meshcherskii, I.V.: Work on the Mechanics of Bodies of Variable Mass. GITTL, Moscow (1952)

    MATH  Google Scholar 

  38. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  39. Jain, M., Aggarwal, R.: Existence and stability of non-collinear librations points in the restricted problem with Poynting-Robertson light drag effect. Int. J. Math. Trends Technol. 19, 20–33 (2015)

    Article  Google Scholar 

  40. Jain, M., Aggarwal, R.: Restricted three-body problem with Stokes drag effect. Int. J. Astron. Astrophys. 5, 95–105 (2015)

    Article  Google Scholar 

  41. Mittal, A., Ahmad, I., Bhatnagar, K.B.: Periodic orbits in the photogravitational restricted problem with the smaller primary an oblate body. Astrophys. Space Sci. 323, 65–73 (2009). https://doi.org/10.1007/s10509-009-0038-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Center for Fundamental Research in Space dynamics and Celestial mechanics (CFRSC), New Delhi, Delhi, India for providing research facilities.

Funding

This research did not receive any specific grant from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Appendix Tables 1, 2, 3, 4, 5, 6, 7, 8, 9.

Table 1 Equilibrium points in the \(\xi \eta\)-plane for \(\mu =0.019\), \(\gamma =0.1\), \(\sigma =0.015\) and \(\alpha =0.2\), \(q=0.99\), \(k=0.00001\) when the oblateness parameter A is increasing
Table 2 Equilibrium points in the \(\xi \eta\)-plane for \(\mu =0.019\), \(\gamma =0.15\), \(\sigma =0.25\), \(A=0.00015\), \(k=0.00001\) and \(\alpha =0.2\) when the radiation pressure q is increasing
Table 3 Equilibrium points in the \(\xi \eta\)-plane for \(\mu =0.019\), \(\gamma =0.35\), \(\sigma =0.05\) and \(k=0.0015\), \(A=0.00015\), \(q=0.99\) when \(\alpha\) is increasing
Table 4 Equilibrium points in the \(\xi \eta\)-plane for \(\mu =0.019\), \(\alpha =0.2\), \(\gamma =0.15\), \(\sigma =0.035\), \(A=0.00015\), \(q=0.95\) when k is increasing
Table 5 Equilibrium points in the \(\xi \eta\)-plane for \(\mu =1/3\), \(\alpha =0.2\), \(\gamma =0.1\), \(\sigma =0.2\), \(A=0.00025\) and \(q=0.985\) when the dissipative constant k is increasing
Table 6 The characteristic roots of eight non-collinear equilibrium points for \(\mu =0.019\), \(\alpha =0.2\), \(\gamma =0.1\), \(k=0.00001\), \(A=0.0001\), \(k=0.00001\), \(q=0.99\) and \(\sigma =0.015\)
Table 7 The characteristic roots of eight non-collinear equilibrium points for \(\mu =0.019\), \(\alpha =0.2\), \(\gamma =0.1\), \(k=0.00001\), \(k=0.00001\), \(q=0.99\), \(\sigma =0.05\) and \(A=-0.001\)
Table 8 The characteristic roots when ten non-collinear equilibrium points exists for \(\mu =1/3\), \(\alpha =0.2\), \(\gamma =0.1\), \(k=0.00001\), \(A=0.00025\), \(k=0.00001\), \(q=0.985\) and \(\sigma =0.2\)
Table 9 The characteristic roots of six equilibrium points in the Gliese 667C-Gliese 667Ce-Gliese 667Cf-Spacecraft system for 0.0000261538, \(\alpha =0.2\), \(\gamma =0.1\), \(k=0.0140248\), \(A=0.0001\), 0.999949 and \(\sigma =0.05\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A., Pal, K. & Aggarwal, R. The Analysis of the Photogravitational R4BP Under the Combined Effect of Stokes Drag and Oblateness with Variable Mass. J Astronaut Sci 70, 52 (2023). https://doi.org/10.1007/s40295-023-00414-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00414-7

Keywords

Navigation