Skip to main content
Log in

Urantide alleviates atherosclerosis-related liver and kidney injury via the Wnt/β-catenin signaling pathway in ApoE(−/−) mice

Urantid lindert arteriosklerosebedingte Leber- und Nierenschädigungen über den Wnt/β-Catenin-Signalweg bei ApoE(−/−)-Mäusen

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Objective

To investigate the role of urantide in the prevention and treatment of atherosclerosis (AS)-related liver and kidney injury by antagonizing the urotensin II/urotensin receptor (UII/UT) system and regulating the Wnt/β-catenin signaling pathway.

Methods

Atherosclerotic ApoE−/− mice were treated with 20 mg/kg, 30 mg/kg, and 40 mg/kg urantide for 14 days.

Results

When ApoE−/− mice developed AS, significant pathological changes occurred in the liver and kidney, and the UII/UT system in tissue was highly activated; furthermore, the Wnt/β-catenin signalling pathway was activated, and proteins related to this signalling pathway, such as GSK-3β, AXIN2, CK‑1, and APC, were significantly downregulated. After urantide treatment, the pathological damage to the liver and kidney was effectively improved, the activity of the UII/UT system was effectively inhibited, and the expression of the Wnt/β-catenin signalling pathway and related proteins was restored. Wnt/β-catenin signals were mainly localized in the cytoplasm, renal tubules, and interstitium.

Conclusion

Urantide could improve AS-related liver and kidney injury by antagonizing the UII/UT system, and the improvements in liver and kidney function in atherosclerotic ApoE−/− mice may be related to inhibition of the Wnt/β-catenin signalling pathway.

Zusammenfassung

Zielsetzung

Untersuchung der Rolle von Urantid bei der Vorbeugung und Behandlung von Arteriosklerose (AS)-bedingten Leber- und Nierenschäden durch Antagonisierung des Urotensin II/Urotensin-Rezeptor(UII/UT)-Systems und Regulierung des Wnt/β-Catenin-Signalwegs.

Methoden

Arteriosklerotische ApoE(−/−)-Mäuse wurden 14 Tage lang mit 20 mg/kg, 30 mg/kg bzw. 40 mg/kg Urantid behandelt.

Ergebnisse

Als ApoE(−/−)-Mäuse eine Arteriosklerose entwickelten, traten signifikante pathologische Veränderungen in der Leber und Niere auf, und das UII/UT-System im Gewebe war stark aktiviert; außerdem war der Wnt/β-Catenin-Signalweg aktiviert, und Proteine, die mit diesem Signalweg in Verbindung stehen, wie GSK-3β, AXIN2, CK‑1 und APC, waren signifikant herunterreguliert. Nach der Behandlung mit Urantid wurden die pathologischen Schäden an Leber und Niere effektiv verbessert, die Aktivität des UII/UT-Systems wurde effektiv gehemmt, und die Expression des Wnt/β-Catenin-Signalwegs und der damit verbundenen Proteine wurde wiederhergestellt. Die Wnt/β-Catenin-Signale waren hauptsächlich im Zytoplasma, in den Nierentubuli und im Interstitium lokalisiert.

Schlussfolgerung

Urantid könnte AS-bedingte Leber- und Nierenschäden durch Antagonisierung des UII/UT-Systems verbessern; und die Verbesserungen der Leber- und Nierenfunktion arteriosklerotischen ApoE(−/−)-Mäusen könnten mit der Hemmung des Wnt/β-Catenin-Signalwegs zusammenhängen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Viola J, Soehnlein O (2015) Atherosclerosis—a matter of unresolved inflammation [J]. Semin Immunol 27(3):184–193

    Article  CAS  PubMed  Google Scholar 

  2. Menghini R, Casagrande V, Cardellini M et al (2015) FoxO1 regulates asymmetric dimethylarginine via downregulation of dimethylaminohydrolase 1 in human endothelial cells and subjects with atherosclerosis [J]. Atherosclerosis 242(1):230–235

    Article  CAS  PubMed  Google Scholar 

  3. Nelson CP, Hamby SE, Saleheen D et al (2015) Genetically determined height and coronary artery disease [J]. N Engl J Med 372(17):1608–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gaudio E, Nobili V, Franchitto A et al (2012) Nonalcoholic fatty liver disease and atherosclerosis [J]. Intern Emerg Med 7(Suppl 3):S297–S305

    Article  PubMed  Google Scholar 

  5. Farooqui Z, Ahmed F, Rizwan S et al (2017) Protective effect of nigella sativa oil on cisplatin induced nephrotoxicity and oxidative damage in rat kidney [J]. Biomed Pharmacother 85:7–15

    Article  CAS  PubMed  Google Scholar 

  6. Huang P, Yan R, Zhang X et al (2019) Activating Wnt/β-catenin signaling pathway for disease therapy: challenges and opportunities [J]. Pharmacol Ther 196:79–90

    Article  CAS  PubMed  Google Scholar 

  7. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease [J]. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Wang X (2020) Targeting the Wnt/β-catenin signaling pathway in cancer [J]. J Hematol Oncol 13(1):165

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Fan X, Xing L et al (2019) Wnt signaling: a promising target for osteoarthritis therapy [J]. Cell Commun Signal 17(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park HB, Kim JW, Baek KH (2020) Regulation of Wnt Signaling through ubiquitination and deubiquitination in Cancers [J]. Int J Mol Sci (21(11))

  11. Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R (2018) H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/β-catenin in ox-LDL-stimulated vascular smooth muscle cells [J]. J Biomed Sci 25(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vallée A, Vallée J, Lecarpentier Y (2019) Metabolic reprogramming in atherosclerosis: opposed interplay between the canonical WNT/β-catenin pathway and PPARγ [J]. J Mol Cell Cardiol 133:36–46

    Article  PubMed  Google Scholar 

  13. Wang F, Liu Z, Park SH et al (2018) Myeloid β‑catenin deficiency exacerbates atherosclerosis in low-density lipoprotein receptor-deficient mice [J]. Arterioscler Thromb Vasc Biol 38(7):1468–1478

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ames RS, Sarau HM, Chambers JK et al (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14 [J]. Nature 401(6750):282–286

    Article  CAS  PubMed  Google Scholar 

  15. Sun SL, Liu LM (2019) Urotensin II: an inflammatory cytokine [J]. J Endocrinol

  16. Schuster R, Steffen P, Dreyer B et al (2021) Identifying circulating Urotensin II and Urotensin II-related peptide-generating enzymes in the human plasma fraction Cohn IV‑4 [J]. J Proteome Res 20(12):5368–5378

    Article  CAS  PubMed  Google Scholar 

  17. Yu QQ, Cheng DX, Xu LR et al (2020) Urotensin II and urantide exert opposite effects on the cellular components of atherosclerotic plaque in hypercholesterolemic rabbits [J]. Acta Pharmacol Sin 41(4):546–553

    Article  CAS  PubMed  Google Scholar 

  18. Pereira-Castro J, Bras-Silva C, Fontes-Sousa AP (2019) Novel insights into the role of urotensin II in cardiovascular disease [J]. Drug Discov Today 24(11):2170–2180

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, Miao G, Wang T et al (2020) Urantide attenuates myocardial damage in atherosclerotic rats by regulating the MAPK signalling pathway [J]. Life Sci 262:118551

    Article  CAS  PubMed  Google Scholar 

  20. Wang T, Xie YQ, Miao GX et al (2020) Urotensin receptor antagonist urantide improves atherosclerosis-related kidney injury by inhibiting JAK2/STAT3 signaling pathway in rats [J]. Life Sci 247:117421

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Guo Z, Cui H et al (2021) Urantide prevents Ccl4-induced acute liver injury in rats by regulating the MAPK signalling pathway [J]. Mol Med Rep (24(4))

  22. Costa J, Alarcão J, Amaral-Silva A et al (2021) Atherosclerosis: the cost of illness in Portugal [J]. Rev Port Cardiol (engl Ed) 40(6):409–419

    Article  PubMed  Google Scholar 

  23. Cotter TG, Rinella M (2020) Nonalcoholic fatty liver disease 2020: the state of the disease [J]. Gastroenterology 158(7):1851–1864

    Article  CAS  PubMed  Google Scholar 

  24. Rewa O, Bagshaw SM (2014) Acute kidney injury-epidemiology, outcomes and economics [J]. Nat Rev Nephrol 10(4):193–207

    Article  CAS  PubMed  Google Scholar 

  25. Yu X, Xu M, Meng X et al (2020) Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI [J]. Sci Transl Med (12(543))

  26. Roth GA, Johnson C, Abajobir A et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015 [J]. J Am Coll Cardiol 70(1):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sha X, Dai Y, Song X et al (2021) The opportunities and challenges of silica nanomaterial for atherosclerosis [J]. Int J Nanomedicine 16:701–714

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bokhari M. R., Bokhari S. R. A. Renal Artery Stenosis [M]. StatPearls. Treasure Island (FL); StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. 2022.

  29. Jegatheswaran J, Hadziomerovic A, Ruzicka M (2021) Acute severe renal artery stenosis presenting as acute kidney injury with severe hypertension and active urine sediment [J]. Can J Cardiol 37(10):1671–1673

    Article  PubMed  Google Scholar 

  30. Nasiri-Ansari N, Nikolopoulou C, Papoutsi K et al (2021) Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE((−/−)) mice by activating autophagy and reducing ER stress and apoptosis [J]. Int J Mol Sci (22(2))

  31. Bi X, Du C, Wang X et al (2021) Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability [J]. Adv Sci (weinh) 8(5):2002738

    Article  CAS  PubMed  Google Scholar 

  32. Schunk SJ, Floege J, Fliser D et al (2021) WNT-β-catenin signalling—a versatile player in kidney injury and repair [J]. Nat Rev Nephrol 17(3):172–184

    Article  CAS  PubMed  Google Scholar 

  33. Wojtaszek E, Oldakowska-Jedynak U, Kwiatkowska M et al (2021) Uremic toxins, oxidative stress, atherosclerosis in chronic kidney disease, and kidney transplantation [J]. Oxid Med Cell Longev 2021:6651367

    Article  PubMed  PubMed Central  Google Scholar 

  34. Russell JO, Monga SP (2018) Wnt/beta-Catenin signaling in liver development, homeostasis, and pathobiology [J]. Annu Rev Pathol 13:351–378

    Article  CAS  PubMed  Google Scholar 

  35. Collins R, Reith C, Emberson J et al (2016) Interpretation of the evidence for the efficacy and safety of statin therapy [J]. Lancet 388(10059):2532–2561

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received funding from the Hebei Provincial Natural Science Foundation (grant no. H2020406011), Hebei Provincial Party Committee Organization Department Youth Top Talent Project (grant no. JZZ [2016] No. 9), Hebei Provincial Science and Technology Department Science and Technology Innovation Guidance Special Project, Hebei Provincial Department of Education Key Project (grant no. ZD2019098), Hebei Provincial Department of Education Outstanding Youth Fund Project (grant no. YQ2013005), Chengde Medical College National Natural Science Foundation Project Cultivation Fund and Key Subjects (Pathology and Pathophysiology) at Colleges and Universities of Hebei Province(grant no. 201916), Natural Science Foundation for Youth of Chengde Medical College Cultivation Fund (KY202123),Basic Research Funds for Chengde Medical College in 2022 (KY202227).

Author information

Authors and Affiliations

Authors

Contributions

JZ and YHX conceived and designed the study. YHX, JYX, SH, TW and HPC performed the experiments. HPC and TW were responsible for experimental technical guidance. SH analyzed the data. YHX wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Zhao.

Ethics declarations

Conflict of interest

This manuscript has been reviewed and approved for publication by Y.-h. Xu, J.-y. Xie, S. Huang, T. Wang, H.-p. Cui and J. Zhao without any conflicts of interest.

This study was approved by Chengde Medical University (Chengde, China). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Yh., Xie, Jy., Huang, S. et al. Urantide alleviates atherosclerosis-related liver and kidney injury via the Wnt/β-catenin signaling pathway in ApoE(−/−) mice. Herz (2023). https://doi.org/10.1007/s00059-023-05219-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00059-023-05219-w

Keywords

Schlüsselwörter

Navigation