Skip to main content
Log in

The Development of SpCas9 Variants with High Specificity and Efficiency Based on the HH Theory

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Streptococcus pyogenes Cas9 (SpCas9) is the most popular tool in gene editing; however, off-target mutagenesis is one of the biggest impediments in its application. In our previous study, we proposed the HH theory, which states that sgRNA/DNA hybrid (hybrid) extrusion-induced enhancement of hydrophobic interactions between the hybrid and REC3/HNH is a key factor in cleavage initiation. Based on the HH theory, we analyzed the interactions between the REC3 domain and hybrid and obtained 8 mutant sites. We designed 8 SpCas9 variants (V1–V8), used digital droplet PCR to assess SpCas9-induced DNA indels in human cells, and developed high-fidelity variants. Thus, the HH theory may be employed to further optimize SpCas9-mediated genome editing systems, and the resultant V3, V6, V7, and V8 SpCas9 variants may be valuable for applications requiring high-precision genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Komor A.C., Badran A.H., Liu D.R. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 169, 559.

    Article  CAS  PubMed  Google Scholar 

  2. Doudna J.A. 2020. The promise and challenge of therapeutic genome editing. Nature. 578, 229‒236.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu X., Clarke R., Puppala A.K., Chittori S., Merk A., Merrill B.J., Simonovic M., Subramaniam S. 2019. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 26, 679‒685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang G., Li J. 2021. Review, analysis, and optimization of the CRISPR Streptococcus pyogenes Cas9 system. Med. Drug Discovery. 9, 100080. https://doi.org/10.1016/j.medidd.2021.100080

    Article  CAS  Google Scholar 

  5. Mozo-Villarías A., Querol E. 2019. A protein self-assembly model guided by electrostatic and hydrophobic dipole moments. PLoS One. 14, e0216253.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shashikala H.B.M., Chakravorty A., Alexov E. 2019. Modeling electrostatic force in protein−protein recognition. Front Mol. Biosci. 6, 94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grdadolnik J., Merzel F., Avbelj F. 2017. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proc. Natl. Acad. Sci. U. S. A. 114, 322‒327.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Galamba N. 2013. Water’s structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B. 117, 2153‒2159.

    Article  CAS  PubMed  Google Scholar 

  9. Kinoshita M. 2009. Importance of translational entropy of water in biological self-assembly processes like protein folding. Int. J. Mol. Sci. 10, 1064‒1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harano Y., Kinoshita M. 2004. Large gain in translational entropy of water is a major driving force in protein folding. Chem. Phys. Lett. 399, 342‒348. https://doi.org/10.1016/j.cplett.2004.09.140

    Article  ADS  CAS  Google Scholar 

  11. Harano Y., Kinoshita M. 2005. Translational-entropy gain of solvent upon protein folding. Biophys. J. 89, 2701‒2710.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng B., Sosa R.P., Martensson A.K.F., Jiang K., Tong A., Dorfman K.D., Takahashi M., Lincoln P., Bustamante C.J., Westerlund F., Norden B. 2019. Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proc. Natl. Acad. Sci. U. S. A. 116, 17169‒17174.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yakovchuk P., Protozanova E., Frank-Kamenetskii M.D. 2006. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564‒574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vologodskii A., Frank-Kamenetskii M.D. 2018. DNA melting and energetics of the double helix. Phys. Life Rev. 25, 1‒21.

    Article  ADS  PubMed  Google Scholar 

  15. Chen J.S., Dagdas Y.S., Kleinstiver B.P., Welch M.M., Sousa A.A., Harrington L.B., Sternberg S.H., Joung J.K., Yildiz A., Doudna J.A. 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 550, 407‒410.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Joung J.K. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 529, 490‒495.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279‒284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science. 351, 84‒88.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Guo M., Ren K., Zhu Y., Tang Z., Wang Y., Zhang B., Huang Z. 2019. Structural insights into a high fidelity variant of SpCas9. Cell Res. 29, 183‒192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang G., Wang C., Chu T., Wu X., Anderson C.M., Huang D., Li J. 2023. Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency. J. Biotechnol. 368, 42‒52.

    Article  CAS  PubMed  Google Scholar 

  21. Sykes P.J., Neoh S.H., Brisco M.J., Hughes E., Condon J., Morley A.A. 1992. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 13, 444‒449.

    CAS  PubMed  Google Scholar 

  22. Rose J.C., Stephany J.J., Valente W.J., Trevillian B.M., Dang H.V., Bielas J.H., Maly D.J., Fowler D.M. 2017. Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics. Nat. Methods. 14, 891‒896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyaoka Y., Mayerl S.J., Chan A.H., Conklin B.R. 2018. Detection and quantification of HDR and NHEJ induced by genome editing at endogenous gene loci using droplet digital PCR. Methods Mol. Biol. 1768, 349‒362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei C.T., Maly D.J., Fowler D.M. 2020. Temporal and rheostatic control of genome editing with a chemically-inducible Cas9. Methods Enzymol. 633, 119‒141.

    Article  PubMed  Google Scholar 

  25. Dibitetto D., La Monica M., Ferrari M., Marini F., Pellicioli A. 2018. Formation and nucleolytic processing of Cas9-induced DNA breaks in human cells quantified by droplet digital PCR. DNA Repair. 68, 68‒74.

    Article  CAS  PubMed  Google Scholar 

  26. Helfer-Hungerbuehler A.K., Shah J., Meili T., Boenzli E., Li P., Hofmann-Lehmann R. 2021. Adeno-associated vector-delivered CRISPR/SaCas9 system reduces feline leukemia virus production in vitro. Viruses. 13 (8), 1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guschin D.Y., Waite A.J., Katibah G.E., Miller J.C., Holmes M.C., Rebar E.J. 2010. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247‒256.

    Article  CAS  PubMed  Google Scholar 

  28. Auer B., Kumar R., Schmidt J.R., Skinner J.L. 2007. Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O. Proc. Natl. Acad. Sci. U. S. A. 104, 14215‒14220.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shibata M., Nishimasu H., Kodera N., Hirano S., Ando T., Uchihashi T., Nureki O. 2017. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nat. Commun. 8, 1430.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156, 935‒949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Palecz B. 2002. Enthalpic homogeneous pair interaction coefficients of L-alpha-amino acids as a hydrophobicity parameter of amino acid side chains. J. Am. Chem. Soc. 124, 6003‒6008.

    Article  CAS  PubMed  Google Scholar 

  32. Fauchère J.L., Charton M., Kier L.B., Verloop A., Pliska V. 1988. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Protein Res. 32, 269‒278.

    Article  PubMed  Google Scholar 

  33. Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822‒826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827‒832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M., McNeill M.S., Yan S., Camarena J., Lee C.M., Park S.H., Wiebking V., Bak R.O., Gomez-Ospina N., Pavel-Dinu M., Sun W., Bao G., Porteus M.H., Behlke M.A. 2018. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216‒1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kulcsár P.I., Tálas A., Tóth E., Nyeste A., Ligeti Z., Welker Z., Welker E. 2020. Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5'G-extended sgRNAs. Nat. Commun. 11, 1223.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Characteristic Innovation Project in General Colleges and Universities of Guangdong Province (2022KTSCX230), National Natural Science Foundation of China (Grant no. 81601654), Natural Science Foundation of Guangdong Province, China (Grant nos. 2014A030310090 and 2016A030313578), Medical Scientific Research Foundation of Guangdong Province, China (Grant no. A2015207), and Pearl River S&T Nova Program of Guangzhou (201806010037), Medical Science and Technology Research Foundation of Guangdong Province (no. A2023283), Nanshan District Science and Technology Plan Project (no. NS2022077).

Author information

Authors and Affiliations

Authors

Contributions

Guohua Wang: conceptualization, methodology, formal analysis, investigation, data curation, visualization, writing—original draft, review, and editing. Canmao Wang: methodology, conceptualization, investigation, writing— review and editing. Xinjun Wu: methodology, investigation, writing—review and editing. Teng Chu: methodology, writing—review and editing. Dongwei Huang: methodology and review. Juan Li: conceptualization, methodology, investigation, supervision, writing—original draft, review, and editing, funding acquisition.

Corresponding author

Correspondence to J. Li.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

ADDITIONAL INFORMATION

SpCas9 structures (PDB ID: 4OO8, 6O0Z, 6O0Y) were analyzed using PyMOL 2.4 (Schrödinger). All 3D structure figures were generated using PyMOL2.4 (Schrödinger).

Strains and plasmids are available upon request. The authors affirm that all data necessary for confirming the conclusions of the article are present within the article, figures, and tables.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this work.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1134/S0026893324010187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G.H., Wang, C.M., Wu, X.J. et al. The Development of SpCas9 Variants with High Specificity and Efficiency Based on the HH Theory. Mol Biol 58, 133–146 (2024). https://doi.org/10.1134/S0026893324010187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010187

Keywords:

Navigation