Skip to main content
Log in

Microparticle motion under dielectrophoresis: immersed boundary—Lattice Boltzmann-based multiphase model and experiments

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This study investigates the electrokinetic manipulation of microparticles within microchannels under low Reynolds number (Stokes flow) conditions. We employed the immersed boundary-lattice Boltzmann method (IB-LBM) for multiphase simulations to analyze microparticle behavior in a Newtonian fluid under the influence of both hydrodynamic and external dielectrophoretic forces. To achieve this, we developed an in-house C-language code, establishing a hybrid setup wherein the external dielectrophoretic force is numerically computed using the finite-difference method (FDM). This force is then scaled through a mapping mechanism and integrated into the IB-LBM simulation. A series of benchmarking studies were conducted to validate the IB-LBM code by comparing our simulation results with existing analytical, numerical, and experimental data. In conjunction with the numerical work, we fabricated a microfluidic device in-house using standard lithographic techniques. Experiments were designed to replicate the conditions modeled numerically, using red blood cells as representative bioparticles. Our results demonstrate excellent agreement between numerical and experimental data for bioparticle trajectories within the microchannel under the influence of DEP forces in continuous-flow conditions and steady-state positions in the absence of flow, which opens up possibilities for broader applications in active-based microfluidic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sonker M, Sahore V, Woolley AT (2017) Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: a critical review. Analyt Chim Acta 986:1–11

    Article  Google Scholar 

  2. Ahmed H, Park J, Destgeer G, Afzal M, Sung HJ (2019) Surface acoustic wave-based micromixing enhancement using a single interdigital transducer. Appl Phys Lett 114:043702

    Article  Google Scholar 

  3. Destgeer G, Hashmi A, Park J, Ahmed H, Afzal M, Sung HJ (2019) Microparticle self-assembly induced by travelling surface acoustic waves. RSC Adv 9:7916–7921

    Article  Google Scholar 

  4. Alhammadi F, Waheed W, El-Khasawneh B, Alazzam A (2018) Continuous-flow cell dipping and medium exchange in a microdevice using dielectrophoresis. Micromachines 9:223

    Article  Google Scholar 

  5. Edd JF, Mishra A, Dubash TD, Herrera S, Mohammad R, Williams EK et al (2020) Microfluidic concentration and separation of circulating tumor cell clusters from large blood volumes. Lab Chip 20:558–567

    Article  Google Scholar 

  6. Alazzam A, Alnaimat F, Hilal-Alnaqbi A, Waheed W, Mathew B (2017) Dielectrophoresis based focusing in microfluidic devices. In: 2017 IEEE regional symposium on micro and nanoelectronics (RSM), pp 207–211

  7. Waheed W, Alazzam A, Abu-Nada E, Khashan S, Abutayeh M (2018) A microfluidics device for 3D switching of microparticles using dielectrophoresis. J Electrostat 94:1–7

    Article  Google Scholar 

  8. Waheed W, Alazzam A, Mathew B, Christoforou N, Abu-Nada E (2018) Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells. J Chromatogr B 1087:133–137

    Article  Google Scholar 

  9. Xu Z, Kleinstreuer C (2018) Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow. Med Biol Eng Comput 56:1949–1958

    Article  Google Scholar 

  10. Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech House, Boston

    Google Scholar 

  11. Jesús-Pérez NM, Lapizco-Encinas BH (2011) Dielectrophoretic monitoring of microorganisms in environmental applications. Electrophoresis 32:2331–2357

    Article  Google Scholar 

  12. Neethirajan S, Kobayashi I, Nakajima M, Wu D, Nandagopal S, Lin F (2011) Microfluidics for food, agriculture and biosystems industries. Lab Chip 11:1574–1586

    Article  Google Scholar 

  13. Kopp MU, Crabtree HJ, Manz A (1997) Developments in technology and applications of microsystems. Curr Opin Chem Biol 1:410–419

    Article  Google Scholar 

  14. Kim G, Lim J, Mo C (2016) Applications of microfluidics in the agro-food sector: a review. J Biosyst Eng 41:116–125

    Article  Google Scholar 

  15. Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Analyt Chem 72:330–335

    Article  Google Scholar 

  16. Yan S, Zhang J, Yuan D, Li W (2017) Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38:238–249

    Article  Google Scholar 

  17. Waheed W, Sharaf OZ, Alazzam A, Abu-Nada E (2021) Dielectrophoresis-field flow fractionation for separation of particles: a critical review. J Chromatogr A 1637:461799

    Article  Google Scholar 

  18. Waheed W, Alazzam A, Mathew B, Abu Nada E, Al Khateeb AN (2018) A scalabale microfluidic device for switching of microparticles using dielectrophoresis. In: ASME international mechanical engineering congress and exposition, p V010T13A014

  19. Broche LM, Labeed FH, Hughes MP (2005) Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data. Phys Med Biol 50:2267

    Article  Google Scholar 

  20. Li H, Bashir R (2004) On the design and optimization of micro-fluidic dielectrophoretic devices: a dynamic simulation study. Biomed Microdev 6:289–295

    Article  Google Scholar 

  21. Shamloo A, Kamali A (2017) Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types. J Sep Sci 40:4067–4075

    Article  Google Scholar 

  22. Liu Y, Liu WK, Belytschko T, Patankar N, To AC, Kopacz A et al (2007) Immersed electrokinetic finite element method. Int J Numer Methods Eng 71:379–405

    Article  MathSciNet  MATH  Google Scholar 

  23. Basu HS, Bahga SS, Kondaraju S (2020) A fully coupled hybrid lattice Boltzmann and finite difference method-based study of transient electrokinetic flows. Proc Roy Soc A 476:20200423

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren Q, Meng F, Chan CL (2019) Cell transport and suspension in high conductivity electrothermal flow with negative dielectrophoresis by immersed boundary-lattice Boltzmann method. Int J Heat Mass Transf 128:1229–1244

    Article  Google Scholar 

  25. Chen S, Chen H, Martnez D, Matthaeus W (1991) Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys Rev Lett 67:3776

    Article  Google Scholar 

  26. He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J Comput Phys 152:642–663

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan Y, Zu Y, Dong B (2011) LBM, a useful tool for mesoscale modelling of single-phase and multiphase flow. Appl Therm Eng 31:649–655

    Article  Google Scholar 

  28. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  MATH  Google Scholar 

  29. Han Y, Cundall PA (2013) LBM–DEM modeling of fluid–solid interaction in porous media. Int J Numer Anal Methods Geomech 37:1391–1407

    Article  Google Scholar 

  30. Wang M, Kang Q (2010) Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J Comput Phys 229:728–744

    Article  MathSciNet  MATH  Google Scholar 

  31. Masilamani K, Ganguly S, Feichtinger C, Rüde U (2011) Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow in a microchannel. Fluid Dyn Res 43:025501

    Article  MathSciNet  MATH  Google Scholar 

  32. Hlushkou D, Kandhai D, Tallarek U (2004) Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels. Int J Numer Methods Fluids 46:507–532

    Article  MATH  Google Scholar 

  33. Wang J, Wang M, Li Z (2006) Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J Colloid Interface Sci 296:729–736

    Article  Google Scholar 

  34. Jubery TZ, Srivastava SK, Dutta P (2014) Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis 35:691–713

    Article  Google Scholar 

  35. Nerguizian V, Stiharu I, Al-Azzam N, Yassine-Diab B, Alazzam A (2019) The effect of dielectrophoresis on living cells: crossover frequencies and deregulation in gene expression. Analyst 144:3853–3860

    Article  Google Scholar 

  36. Williams S (2008) Dielectrophoretic motion of particles and cells, vol 1. Springer, New York

    Google Scholar 

  37. Huang Z, Ge L, Wei W, Deng Y, Lei J (2021) Multiphase lattice Boltzmann modeling of dielectrophoresis fractionation of soft particles. Phys Fluids 33:063311

    Article  Google Scholar 

  38. Huang Y, Wang X-B, Becker FF, Gascoyne P (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J 73:1118–1129

    Article  Google Scholar 

  39. Mathew B, Alazzam A, Abutayeh M, Stiharu I (2016) Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation. J Sep Sci 39:3028–3036

    Article  Google Scholar 

  40. Alazzam A, Stiharu I, Bhat R, Meguerditchian AN (2011) Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis 32:1327–1336

    Article  Google Scholar 

  41. White FM (1979) Fluid mechanics. Tata McGraw-Hill Education

    MATH  Google Scholar 

  42. Alnaimat F, Ramesh S, Alazzam A, Hilal-Alnaqbi A, Waheed W, Mathew B (2018) Dielectrophoresis-based 3D-focusing of microscale entities in microfluidic devices. Cytometry A 93:811–821

    Article  Google Scholar 

  43. Mohamad A (2011) Lattice Boltzmann method, vol 70. Springer, Berlin

    Book  MATH  Google Scholar 

  44. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511–525

    Article  MATH  Google Scholar 

  45. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM (2017) The lattice Boltzmann method, vol 10. Springer, Berlin, pp 4–15

    Book  MATH  Google Scholar 

  46. Guo Z, Zheng C, Shi B (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65:046308

    Article  MATH  Google Scholar 

  47. Kupershtokh AL, Medvedev DA, Karpov DI (2009) On equations of state in a lattice Boltzmann method. Comput Math Appl 58:965–974

    Article  MathSciNet  MATH  Google Scholar 

  48. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271

    Article  MathSciNet  MATH  Google Scholar 

  49. Feng Z-G, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J Comput Phys 195:602–628

    Article  MATH  Google Scholar 

  50. Ota K, Suzuki K, Inamuro T (2012) Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice Boltzmann simulations. Fluid Dyn Res 44:045504

    Article  MATH  Google Scholar 

  51. Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study. Biomicrofluidics 8:054114–054114

    Article  Google Scholar 

  52. Krüger T, Varnik F, Raabe D (2011) Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput Math Appl 61:3485–3505

    Article  MathSciNet  MATH  Google Scholar 

  53. Krüger T, Frijters S, Günther F, Kaoui B, Harting J (2013) Numerical simulations of complex fluid–fluid interface dynamics. Eur Phys J Spec Top 222:177–198

    Article  Google Scholar 

  54. Tritton DJ (1959) Experiments on the flow past a circular cylinder at low Reynolds numbers. J Fluid Mech 6:547–567

    Article  MATH  Google Scholar 

  55. Wieselsberger C (1922) New data on the laws of fluid resistance

  56. Munson BR, Okiishi TH, Huebsch WW, Rothmayer AP (2013) Fluid mechanics. Wiley, Singapore

    Google Scholar 

  57. Waheed W, Alazzam A, Al-Khateeb AN, Sung HJ, Abu-Nada E (2019) Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: low Reynolds number and high Schmidt scenarios. J Chem Phys 150:054901

    Article  Google Scholar 

  58. Segré G, Silberberg A (2006) Behaviour of macroscopic rigid spheres in Poiseuille flow part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14:115–135

    Article  MATH  Google Scholar 

  59. Feng J, Hu HH, Joseph DD (2006) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J Fluid Mech 277:271–301

    Article  MATH  Google Scholar 

  60. Inamuro T, Maeba K, Ogino F (2000) Flow between parallel walls containing the lines of neutrally buoyant circular cylinders. Int J Multiph Flow 26:1981–2004

    Article  MATH  Google Scholar 

  61. Ghassemi A, Pak A (2015) Numerical simulation of sand production experiment using a coupled Lattice Boltzmann-discrete element method. J Petrol Sci Eng 135:218–231

    Article  Google Scholar 

  62. Alazzam A, Mathew B, Alhammadi F (2017) Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J Sep Sci 40:1193–1200

    Article  Google Scholar 

  63. Telis V, Telis-Romero J, Mazzotti H, Gabas A (2007) Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int J Food Prop 10:185–195

    Article  Google Scholar 

  64. Al-Ali A, Waheed W, Abu-Nada E, Alazzam A (2022) A review of active and passive hybrid systems based on dielectrophoresis for the manipulation of microparticles. J Chromatogr A 1676:463268

    Article  Google Scholar 

Download references

Acknowledgements

This publication is based upon work supported by the research and development funding organization (ASPIRE) under Award No. [AARE20-358].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eiyad Abu-Nada or Anas Alazzam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, W., Abu-Nada, E. & Alazzam, A. Microparticle motion under dielectrophoresis: immersed boundary—Lattice Boltzmann-based multiphase model and experiments. Comp. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00686-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00686-8

Keywords

Navigation