Skip to main content

Advertisement

Log in

A gene therapy targeting medium-chain acyl-CoA dehydrogenase (MCAD) did not protect against diabetes-induced cardiac pathology

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic.

Key messages

  • The effects of increasing MCAD in the diabetic heart are unknown.

  • Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart.

  • Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart.

  • Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology.

  • AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Cavallari I, Bhatt DL, Steg PG, Leiter LA, McGuire DK, Mosenzon O, Im K, Raz I, Braunwald E, Scirica BM (2021) Causes and risk factors for death in diabetes: a competing-risk analysis from the SAVOR-TIMI 53 trial. J Am Coll Cardiol 77(14):1837–1840

    Article  PubMed  Google Scholar 

  2. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34

    Article  CAS  PubMed  Google Scholar 

  3. Prakoso D, Tate M, Blasio MJ, Ritchie RH (2021) Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy - current and future perspectives. Clin Sci 135(11):1369–1387

    Article  CAS  Google Scholar 

  4. Figtree GA, Rådholm K, Barrett TD, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Matthews DR, Shaw W, Neal B (2019) Effects of canagliflozin on heart failure outcomes associated with preserved and reduced ejection fraction in type 2 diabetes mellitus. Circulation 139(22):2591–2593

    Article  PubMed  Google Scholar 

  5. Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Martinez F, Shah SJ, Desai AS, McMurray JJV, Solomon SD (2022) SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400(10354):757–767

    Article  CAS  PubMed  Google Scholar 

  6. Snaith JR, Greenfield JR (2022) Sodium-glucose cotransporter 2 inhibitors in type 1 diabetes: a missed opportunity for cardiovascular protection? Med J Aust 217(3):126–128

    Article  PubMed  PubMed Central  Google Scholar 

  7. Karwi QG, Sun Q, Lopaschuk GD (2021) The contribution of cardiac fatty acid oxidation to diabetic cardiomyopathy severity. Cells 10(11)

  8. Karwi QG, Zhang L, Wagg CS, Wang W, Ghandi M, Thai D, Yan H, Ussher JR, Oudit GY, Lopaschuk GD (2019) Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovasc Diabetol 18(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang W, Zhang L, Battiprolu PK, Fukushima A, Nguyen K, Milner K, Gupta A, Altamimi T, Byrne N, Mori J, Alrob OA, Wagg C, Fillmore N, Wang S-h, Liu DM, Fu A, Lu JY, Chaves M, Motani A, Ussher JR, Reagan JD, Dyck JRB, Lopaschuk GD (2019) Malonyl CoA decarboxylase inhibition improves cardiac function post-myocardial infarction. JACC: Basic Transl Sci 4(3):385–400

  10. Shao D, Kolwicz SC, Wang P, Roe ND, Villet O, Nishi K, Hsu Y-WA, Flint GV, Caudal A, Wang W, Regnier M, Tian R (2020) Increasing fatty acid oxidation prevents high-fat diet–induced cardiomyopathy through regulating Parkin-mediated mitophagy. Circulation 142(10):983–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R (2012) Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 111(6):728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi YS, de Mattos ABM, Shao D, Li T, Nabben M, Kim M, Wang W, Tian R, Kolwicz SC Jr (2016) Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J Mol Cell Cardiol 100:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104(24):2923–2931

    Article  CAS  PubMed  Google Scholar 

  14. Wiles JR, Leslie N, Knilans TK, Akinbi H (2014) Prolonged QTc interval in association with medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics 133(6):e1781–1786

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marci M, Ajovalasit P (2009) Medium-chain Acyl-CoA dehydrogenase deficiency in an infant with dilated cardiomyopathy. Cardiol Res Pract 2009:281389

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin RCY, Weeks KL, Gao X-M, Williams RBH, Bernardo BC, Kiriazis H, Matthews VB, Woodcock EA, Bouwman R, Mollica JP, Speirs HJ, Dawes IW, Daly RJ, Shioi T, Izumo S, Febbraio MA, Du X-J, McMullen JR (2010) PI3K(p110a) protects against myocardial infarction-induced heart failure/ Identification of PI3K-regulated miRNAs and mRNAs. Arterioscler Thromb Vasc Biol 30:724–732

    Article  CAS  PubMed  Google Scholar 

  17. Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, Tham YK, Sapra G, Qin C, Cemerlang N, Boey EJ, Jandeleit-Dahm K, Du XJ, McMullen JR (2012) Enhanced phosphoinositide 3-kinase(p110alpha) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 55(12):3369–3381

    Article  CAS  PubMed  Google Scholar 

  18. Saifudeen I, Subhadra L, Konnottil R, Nair RR (2017) Metabolic modulation by medium-chain triglycerides reduces oxidative stress and ameliorates CD36-mediated cardiac remodeling in spontaneously hypertensive rat in the initial and established stages of hypertrophy. J Card Fail 23(3):240–251

    Article  CAS  PubMed  Google Scholar 

  19. Ismael S, Nair RR (2021) Reactivation of fatty acid oxidation by medium chain fatty acid prevents myocyte hypertrophy in H9c2 cell line. Mol Cell Biochem 476(1):483–491

    Article  CAS  PubMed  Google Scholar 

  20. Bernardo BC, Weeks KL, Pongsukwechkul T, Gao X, Kiriazis H, Cemerlang N, Boey EJ, Tham YK, Johnson CJ, Qian H, Du XJ, Gregorevic P, McMullen JR (2018) Gene delivery of medium chain acyl-coenzyme A dehydrogenase (MCAD) induces physiological cardiac hypertrophy and protects against pathological remodelling. Clin Sci 132:381–397

    Article  CAS  Google Scholar 

  21. Ho KL, Karwi QG, Connolly D, Pherwani S, Ketema EB, Ussher JR, Lopaschuk GD (2022) Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia 65(3):411–423

    Article  PubMed  Google Scholar 

  22. Li W, Yao M, Wang R, Shi Y, Hou L, Hou Z, Lian K, Zhang N, Wang Y, Li W, Wang W, Jiang L (2018) Profile of cardiac lipid metabolism in STZ-induced diabetic mice. Lipids Health Dis 17(1):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernardo BC, Yildiz GS, Kiriazis H, Harmawan CA, Tai CMK, Ritchie RH, McMullen JR (2022) In vivo inhibition of miR-34a modestly limits cardiac enlargement and fibrosis in a mouse model with established type 1 diabetes-induced cardiomyopathy, but does not improve diastolic function. Cells 11(19):3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lother A, Bondareva O, Saadatmand AR, Pollmeier L, Hardtner C, Hilgendorf I, Weichenhan D, Eckstein V, Plass C, Bode C, Backs J, Hein L, Gilsbach R (2021) Diabetes changes gene expression but not DNA methylation in cardiac cells. J Mol Cell Cardiol 151:74–87

    Article  CAS  PubMed  Google Scholar 

  25. Xi Y, Chen D, Dong Z, Lam H, He J, Du K, Chen C, Guo J, Xiao J (2022) RNA sequencing of cardiac in a rat model uncovers potential target LncRNA of diabetic cardiomyopathy. Front Genet 13:848364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferreira R, Guerra G, Padrao AI, Melo T, Vitorino R, Duarte JA, Remiao F, Domingues P, Amado F, Domingues MR (2013) Lipidomic characterization of streptozotocin-induced heart mitochondrial dysfunction. Mitochondrion 13(6):762–771

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Mohsen AW, Mihalik SJ, Goetzman ES, Vockley J (2010) Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. J Biol Chem 285(39):29834–29841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng J, Li D (2004) Expression and purification of His-tagged rat mitochondrial medium-chain acyl-CoA dehydrogenase wild-type and Arg256 mutant proteins. Protein Expr Purif 37(2):472–478

    Article  CAS  PubMed  Google Scholar 

  29. Bross P, Jensen TG, Andresen BS, Kjeldsen M, Nandy A, Kølvraa S, Ghisla S, Rasched I, Bolund L, Gregersen N (1994) Characterization of wild-type human medium-chain acyl-CoA dehydrogenase (MCAD) and mutant enzymes present in MCAD-deficient patients by two-dimensional gel electrophoresis: evidence for post-translational modification of the enzyme. Biochem Med Metab Biol 52(1):36–44

    Article  CAS  PubMed  Google Scholar 

  30. Course MM, Scott AI, Schoor C, Hsieh CH, Papakyrikos AM, Winter D, Cowan TM, Wang X (2018) Phosphorylation of MCAD selectively rescues PINK1 deficiencies in behavior and metabolism. Mol Biol Cell 29(10):1219–1227

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rennison JH, McElfresh TA, Okere IC, Patel HV, Foster AB, Patel KK, Stoll MS, Minkler PE, Fujioka H, Hoit BD, Young ME, Hoppel CL, Chandler MP (2008) Enhanced acyl-CoA dehydrogenase activity is associated with improved mitochondrial and contractile function in heart failure. Cardiovasc Res 79(2):331–340

    Article  CAS  PubMed  Google Scholar 

  32. Zhong P, Peng J, Liu T, Ding HS (2022) AAV9-mediated cardiac CNTF overexpression exacerbated adverse cardiac remodeling in streptozotocin-induced type 1 diabetic models. Cardiovasc Toxicol 22(1):88–96

    Article  CAS  PubMed  Google Scholar 

  33. Meloni M, Descamps B, Caporali A, Zentilin L, Floris I, Giacca M, Emanueli C (2012) Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 61(1):229–240

    Article  CAS  PubMed  Google Scholar 

  34. Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G, Oikawa A, Cesselli D, Beltrami AP, Giacca M, Emanueli C, Madeddu P (2011) Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 108(10):1238–1251

    Article  CAS  PubMed  Google Scholar 

  35. Tate M, Perera N, Prakoso D, Willis AM, Deo M, Oseghale O, Qian H, Donner DG, Kiriazis H, De Blasio MJ, Gregorevic P, Ritchie RH (2021) Bone morphogenetic protein 7 gene delivery improves cardiac structure and function in a murine model of diabetic cardiomyopathy. Front Pharmacol 12

  36. Prakoso D, De Blasio MJ, Qin C, Rosli S, Kiriazis H, Qian H, Du XJ, Weeks KL, Gregorevic P, McMullen JR, Ritchie RH (2017) Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clin Sci (London) 131(12):1345–1360

    Article  CAS  Google Scholar 

  37. Prakoso D, Lim SY, Erickson JR, Wallace RS, Lees JG, Tate M, Kiriazis H, Donner DG, Henstridge DC, Davey JR, Qian H, Deo M, Parry LJ, Davidoff AJ, Gregorevic P, Chatham JC, De Blasio MJ, Ritchie RH (2022) Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovasc Res 118(1):212–225

    Article  CAS  PubMed  Google Scholar 

  38. Prakoso D, De Blasio MJ, Tate M, Kiriazis H, Donner DG, Qian H, Nash D, Deo M, Weeks KL, Parry LJ, Gregorevic P, McMullen JR, Ritchie RH (2020) Gene therapy targeting cardiac phosphoinositide 3-kinase (p110alpha) attenuates cardiac remodeling in type 2 diabetes. Am J Physiol Heart Circ Physiol 318(4):H840–H852

    Article  CAS  PubMed  Google Scholar 

  39. Kibel A, Selthofer-Relatic K, Drenjancevic I, Bacun T, Bosnjak I, Kibel D, Gros M (2017) Coronary microvascular dysfunction in diabetes mellitus. J Int Med Res 45(6):1901–1929

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang SC, Ren S, Rau CD, Wang JJ (2018) Isoproterenol-induced heart failure mouse model using osmotic pump implantation. Methods Mol Biol 1816:207–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW (2021) Let’s talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 175:113804

    Article  CAS  PubMed  Google Scholar 

  42. Chang DH, Dumanski SM, Ahmed SB (2023) Female sex-specific considerations to improve rigor and reproducibility in cardiovascular research. Am J Physiol Heart Circ Physiol 324(3):H279–h287

    Article  CAS  PubMed  Google Scholar 

  43. Toedebusch R, Belenchia A, Pulakat L (2018) Diabetic cardiomyopathy: impact of biological sex on disease development and molecular signatures. Front Physiol 9:453

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kannel WB, McGee DL (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 2(2):120–126

    Article  CAS  PubMed  Google Scholar 

  45. Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332(7533):73–78

    Article  PubMed  PubMed Central  Google Scholar 

  46. Suys BE, Katier N, Rooman RP, Matthys D, Op De Beeck L, Du Caju MV, De Wolf D (2004) Female children and adolescents with type 1 diabetes have more pronounced early echocardiographic signs of diabetic cardiomyopathy. Diabetes Care 27(8):1947–1953

    Article  PubMed  Google Scholar 

  47. Saadane A, Lessieur EM, Du Y, Liu H, Kern TS (2020) Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy. PLoS ONE 15(9):e0238727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chandramouli C, Reichelt ME, Curl CL, Varma U, Bienvenu LA, Koutsifeli P, Raaijmakers AJA, De Blasio MJ, Qin CX, Jenkins AJ, Ritchie RH, Mellor KM, Delbridge LMD (2018) Diastolic dysfunction is more apparent in STZ-induced diabetic female mice, despite less pronounced hyperglycemia. Sci Rep 8(1):2346

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ritterhoff J, McMillen TS, Villet O, Young S, Kolwicz SC Jr, Senn T, Caudal A, Tian R (2021) Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts. J Mol Cell Cardiol 158:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao Z, Anselmo AC, Mitragotri S (2022) Viral vector-based gene therapies in the clinic. Bioeng Transl Med 7(1):e10258

    Article  PubMed  Google Scholar 

  51. Tanne JH (2022) FDA approves $3.5m gene therapy for adults with haemophilia B. BMJ 379:o2858

  52. Katz MG, Fargnoli AS, Yarnall C, Perez A, Isidro A, Hajjar RJ, Bridges CR (2018) Technique of complete heart isolation with continuous cardiac perfusion during cardiopulmonary bypass: new opportunities for gene therapy. J Extra Corpor Technol 50(3):193–198

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu YB, Xu BC, Chen YT, Yuan X, Liu JY, Liu T, Du GZ, Jiang W, Yang Y, Zhu Y, Chen LJ, Ding BS, Wei YQ, Yang L (2021) Directed evolution of AAV accounting for long-term and enhanced transduction of cardiovascular endothelial cells. Mol Ther Methods Clin Dev 22:148–161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms Stephanie Jansen (Alfred Research Alliance Animal Facility) for performing the AAV tail vein injections, Ms Amy Hsu (Baker Heart and Diabetes Institute) for technical assistance, and Dr Hongwei Qian (University of Melbourne) for producing the AAV vectors.

Funding

This work was supported by a grant to B.C.B and K.L.W from the Diabetes Australia Research Program (Y19G-BERB), Women in Science Grants from the Baker Heart and Diabetes Institute (to B.C.B), and the Victorian Government’s Operational Infrastructure Support Program. B.C.B is supported by a Baker Fellowship (Baker Heart and Diabetes Institute, Australia). K.L.W is supported by a Future Leader Fellowship from the National Heart Foundation of Australia (award ID 102539). N.M.S. is supported by a Research Training Program scholarship from Monash University. B.G.D, P.G, L.M.D.D, and J.R.M are supported by funding from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B.C.B, K.L.W; methodology: B.C.B, K.L.W; investigation: B.C.B, K.L.W, H.K, G.D.W, E.I.M, N.M.S, A.J.A.R, C.A.H, A.J.T, G.S.Y, Y.L; formal analysis: B.C.B, K.L.W, H.K, G.D.W, E.I.M, N.M.S, A.J.A.R, A.J.T; writing—original draft preparation: K.L.W, B.C.B; writing—review and editing: K.L.W, H.K, G.D.W, A.J.T, P.G, L.M.D.D, J.R.M, B.C.B; funding acquisition: B.C.B, K.L.W; resources: G.D.W, B.G.D, P.G, L.M.D.D, J.R.M; supervision: B.C.B, K.L.W, J.R.M. project administration: B.C.B. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bianca C. Bernardo.

Ethics declarations

Ethics approval

This study does not involve human subjects. All experiments using animals were conducted in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes (National Health & Medical Research Council of Australia, 8th Edition, 2013). All animal procedures and care were approved by the Alfred Research Alliance Animal Ethics Committee (Animal Ethics Committee Approved Project Number E/1867/2018/B).

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kate L. Weeks, Julie R. McMullen, and Bianca C. Bernardo are equal senior authors

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weeks, K.L., Kiriazis, H., Wadley, G.D. et al. A gene therapy targeting medium-chain acyl-CoA dehydrogenase (MCAD) did not protect against diabetes-induced cardiac pathology. J Mol Med 102, 95–111 (2024). https://doi.org/10.1007/s00109-023-02397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02397-2

Keywords

Navigation