Skip to main content

Advertisement

Log in

Lifetime and Degradation Study of Poly(Methyl Methacrylate) via a Data-Driven Study Protocol Approach

  • Thematic Section: 7th World Congress on Integrated Computational Materials Engineering
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

To optimize and extend the service life of polymeric materials in outdoor environments, a domain knowledge-based and data-driven approach was utilized to quantitatively investigate the temporal evolution of degradation modes, mechanisms, and rates under various stepwise accelerated exposure conditions. Six formulations of poly(methyl methacrylate) (PMMA) with different combinations of stabilizing additives, including one unstabilized formulation, were exposed in three accelerated weathering conditions. Degradation was dependent on wavelength as samples in UV light at 340 nm (UVA) exposure showed the most yellowing. The unstabilized PMMA formulation showed much higher yellowness index values (59.5) than stabilized PMMA formulations (2–12). Urbach edge analysis shows a shift toward longer wavelength from 285 to 500 nm with increasing exposure time and an increased absorbance around 400 nm of visible region as the unstabilized samples increase in yellowing. The degradation mechanisms of PMMA were tracked using induced absorbance to dose at specific wavelengths that correspond to known degradation mechanisms. The degradation pathway of PMMA was modeled in a <Stressor | Mechanism | Response> framework using network structural equation modeling (netSEM). netSEM showed changes in degradation pathway as PMMA transition stages of degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yang HE, French RH, Bruckman LS (eds) (2019) Durability and reliability of polymers and other materials in photovoltaic modules, 1st edn. Elsevier, William Andrew Applied Science Publishers, Amsterdam. https://doi.org/10.1016/C2016-0-01032-X

    Book  Google Scholar 

  2. Campo EA (2007) Industrial polymers. Hanser Publications, Middletown, OH

    Book  Google Scholar 

  3. Kurr F (2015) Handbook of plastics failure analysis (eBook). Hanser Publications, Middletown, OH

    Book  Google Scholar 

  4. Gupta A, Liang R, Tsay FD, Moacanin J (1980) Characterization of a dissociative excited state in the solid state: photochemistry of Poly(methyl methacrylate) . Photochemical processes in polymeric systems. 5. Macromolecules 13(6):1696–1700. https://doi.org/10.1021/ma60078a060

    Article  CAS  Google Scholar 

  5. Dickens B, Martin JW, Waksman D (1984) Thermal and photolytic degradation of plates of poly(methyl methacrylate) containing monomer. Polymer 25(5):706–715. https://doi.org/10.1016/0032-3861(84)90041-7

    Article  CAS  Google Scholar 

  6. Allen NS, Edge M (1992) Fundamentals of polymer degradation and stabilisation. Elsevier Applied Science, London

    Google Scholar 

  7. Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 55(4):678–705. https://doi.org/10.1080/15583724.2015.1031377

    Article  CAS  Google Scholar 

  8. D4802 A. ASTM D4802 - 10 standard specification for poly(methyl methacrylate) acrylic plastic sheet

  9. Harper CA (2000) Modern plastics handbook, 1st edn. McGraw-Hill Education, New York

    Google Scholar 

  10. Frazer RQ, Byron RT, Osborne PB, West KP (2005) PMMA: an essential material in medicine and dentistry. J Long-term Eff Med Implants. https://doi.org/10.1615/JLongTermEffMedImplants.v15.i6.60

    Article  Google Scholar 

  11. Koh Y, Jang S, Kim J, Kim S, Ko YC, Cho S, Sohn H (2008) DBR PSi/PMMA composite materials for smart patch application. Colloids Surf A Physicochem Eng Asp 313–314:328–331. https://doi.org/10.1016/j.colsurfa.2007.04.103

    Article  CAS  Google Scholar 

  12. Chakraborty H, Sinha A, Mukherjee N, Ray D, Protim Chattopadhyay P (2013) A study on nanoindentation and tribological behaviour of multifunctional ZnO/PMMA nanocomposite. Mater Lett 93:137–140. https://doi.org/10.1016/j.matlet.2012.11.075

    Article  CAS  Google Scholar 

  13. Thomas P, Ernest Ravindran RS, Varma KBR (2014) Structural, thermal and electrical properties of poly(methyl methacrylate)/CaCu3Ti4O12 composite sheets fabricated via melt mixing. J Therm Anal Calorim 115(2):1311–1319. https://doi.org/10.1007/s10973-013-3500-x

    Article  CAS  Google Scholar 

  14. Wu H, Ma G, Xia Y (2004) Experimental study of tensile properties of PMMA at intermediate strain rate. Mater Lett 58(29):3681–3685. https://doi.org/10.1016/j.matlet.2004.07.022

    Article  CAS  Google Scholar 

  15. El-Bashir SM, Al-Harbi FF, Elburaih H, Al-Faifi F, Yahia IS (2016) Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses. Renew Energy 85:928–938. https://doi.org/10.1016/j.renene.2015.07.031

    Article  CAS  Google Scholar 

  16. Hammam M, El-Mansy MK, El-Bashir SM, El-Shaarawy MG (2007) Performance evaluation of thin-film solar concentrators for greenhouse applications. Desalination 209(1):244–250

    Article  CAS  Google Scholar 

  17. Yang L, Zhou S, Wu L (2015) Preparation of waterborne self-cleaning nanocomposite coatings based on TiO2/PMMA latex. Prog Org Coat 85:208–215. https://doi.org/10.1016/j.porgcoat.2015.04.012

    Article  CAS  Google Scholar 

  18. Bora MÖ (2014) The influence of heat treatment on scratch behavior of polymethylmethacrylate (PMMA). Tribol Int Complet 78:75–83. https://doi.org/10.1016/j.triboint.2014.04.030

    Article  CAS  Google Scholar 

  19. Hamouda AMS (2002) The influence of humidity on the deformation and fracture behaviour of PMMA. J Mater Process Technol 124(1):238–243. https://doi.org/10.1016/S0924-0136(02)00096-1

    Article  CAS  Google Scholar 

  20. Jaiganesh V, Christopher A, Mugilan E (2014) Manufacturing of PMMA cam shaft by rapid prototyping. Proced Eng 97:2127–2135. https://doi.org/10.1016/j.proeng.2014.12.456

    Article  CAS  Google Scholar 

  21. Moghbelli E, Banyay R, Sue H-J (2014) Effect of moisture exposure on scratch resistance of PMMA. Tribol Int 69:46–51. https://doi.org/10.1016/j.triboint.2013.08.012

    Article  CAS  Google Scholar 

  22. Arndt T, Richter S, Pasierb M (2013) Accelerated laboratory weathering of acrylic lens materials. AIP Conf Proc 1556(1):218–221. https://doi.org/10.1063/1.4822235

    Article  Google Scholar 

  23. Pickett JE, Moore JE (1993) Photodegradation of UV screeners. Polym Degrad Stab 42(3):231–244. https://doi.org/10.1016/0141-3910(93)90219-9

    Article  CAS  Google Scholar 

  24. Pickett JE, Moore JE (1996) Photostability of UV screeners in polymers and coatings. ACS Publications, Washington, pp 287–301. https://doi.org/10.1021/ba-1996-0249.ch019

    Book  Google Scholar 

  25. Hamid SH (2014) Handbook of polymer degradation, 2nd edn. CRC Press, Boca Raton. https://doi.org/10.1201/9781482270181

    Book  Google Scholar 

  26. Gerlock JL, Smith CA, Núñez EM, Cooper VA, Liscombe P, Cummings DR, Dusibiber TG (1996) Measurements of Chemical change rates to select superior automotive clearcoats. ACS Publications, Washington, pp 335–347. https://doi.org/10.1021/ba-1996-0249.ch022

    Book  Google Scholar 

  27. Chang TC, Yu PY, Hong YS, Wu TR, Chiu YS (2002) Effect of phenolic phosphite antioxidant on the thermo-oxidative degradation of PMMA. Polym Degrad Stab 77(1):29–34. https://doi.org/10.1016/S0141-3910(02)00076-9

    Article  CAS  Google Scholar 

  28. Troitskii BB, Troitskaya LS, Yakhnov AS, Dmitriev AA, Anikina LI, Denisova VN, Novikova MA (2000) Temperature limit of inhibition of thermo- oxidative degradation of polystyrene and poly(methyl methacrylate) by antioxidants. Int J Polym Mater Polym Biomater 46(1–2):315–330. https://doi.org/10.1080/00914030008054864

    Article  CAS  Google Scholar 

  29. Vlachopoulos J, Strutt D (2003) Polymer processing. Mater Sci Technol 19(9):1161–1169. https://doi.org/10.1179/026708303225004738

    Article  CAS  Google Scholar 

  30. Fox RB, Isaacs LG, Stokes S (1963) Photolytic degradation of poly(methyl methacrylate). J Polym Sci Part A Gen Pap 1(3):1079–1086. https://doi.org/10.1002/pol.1963.100010321

    Article  CAS  Google Scholar 

  31. Semen J, Lando JB (1969) The acid hydrolysis of isotactic and syndiotactic poly(methyl methacrylate). Macromolecules 2(6):570–575. https://doi.org/10.1021/ma60012a003

    Article  CAS  Google Scholar 

  32. Hirata T, Kashiwagi T, Brown JE (1985) Thermal and oxidative degradation of poly(methyl methacrylate): weight loss. Macromolecules 18(7):1410–1418. https://doi.org/10.1021/ma00149a010

    Article  CAS  Google Scholar 

  33. Kashiwagi T, Hirata T, Brown JE (1985) Thermal and oxidative degradation of poly(methyl methacrylate) molecular weight. Macromolecules 18(2):131–138. https://doi.org/10.1021/ma00144a003

    Article  CAS  Google Scholar 

  34. Manring LE (1991) Thermal degradation of poly(methyl methacrylate). 4. Random side-group scission. Macromolecules 24(11):3304–3309. https://doi.org/10.1021/ma00011a040

    Article  CAS  Google Scholar 

  35. Torikai A, Hattori T, Eguchi T (1995) Wavelength effect on the photoinduced reaction of polymethylmethacrylate. J Polym Sci Part A Polym Chem 33(11):1867–1871. https://doi.org/10.1002/pola.1995.080331114

    Article  CAS  Google Scholar 

  36. Kaczmarek H, Kamińska A, Herk A (2000) Photooxidative degradation of poly(alkyl methacrylate)s. Eur Polym J 36(4):767–777. https://doi.org/10.1016/S0014-3057(99)00125-1

    Article  CAS  Google Scholar 

  37. French RH, Podgornik R, Peshek TJ, Bruckman LS, Xu Y, Wheeler NR, Gok A, Hu Y, Hossain MA, Gordon DA, Zhao P, Sun J, Zhang G-Q (2015) Degradation science: mesoscopic evolution and temporal analytics of photovoltaic energy materials. Curr Opin Solid State Mater Sci 19(4):212–226. https://doi.org/10.1016/j.cossms.2014.12.008

    Article  CAS  Google Scholar 

  38. Committee AG (2023) ASTM G154–23: standard practice for operating fluorescent ultraviolet (UV) lamp apparatus for exposure of materials, vol. ASTM G154–23. https://doi.org/10.1520/G0154-23

  39. Committe A (2023) ASTM G155–23: standard practice for operating xenon arc lamp apparatus for exposure of materials, vol. ASTM G155–23. https://doi.org/10.1520/G0155-21

  40. Venkat SN, Yu X, Liu J, Wegmueller J, Jimenez JC, Barcelos EI, Aung HH, Li X, Jaubert J-N, French RH, Bruckman LS (2023) Statistical analysis and degradation pathway modeling of photovoltaic minimodules with varied packaging strategies. Front Energy Res. https://doi.org/10.3389/fenrg.2023.1127796

    Article  Google Scholar 

  41. Gok A, Fagerholm CL, French RH, Bruckman LS (2019) Temporal evolution and pathway models of poly(ethylene-terephthalate) degradation under multi-factor accelerated weathering exposures. PLoS One. https://doi.org/10.1371/journal.pone.0212258

    Article  Google Scholar 

  42. Murray MP, Bruckman LS, French RH (2012) Photodegradation in a stress and response framework: poly(methyl methacrylate) for solar mirrors and lens. J. Photon. Energy 2(1):022004. https://doi.org/10.1117/1.JPE.2.022004

    Article  CAS  Google Scholar 

  43. Wheeler NR, Bruckman LS, Ma J, Wang E, Wang CK, Chou I, Sun J, French RH (2013) Statistical and domain analytics for informed study protocols. In: 2013 IEEE Energytech, pp. 1–7. https://doi.org/10.1109/EnergyTech.2013.6645354

  44. Wheeler NR, Gok A, Peshek TJ, Bruckman LS, Goel N, Zabiyaka D, Fagerholm CL, Dang T, Alcantara C, Terry ML, French RH (2015) A data science approach to understanding photovoltaic module degradation. In: Dhere NG, Wohlgemuth JH, Jones-Albertus R (eds) Reliability of photovoltaic cells, modules, components, and systems VIII, vol 9563. International Society for Optics and Photonics, Bellingham, p 95630. https://doi.org/10.1117/12.2209204

    Chapter  Google Scholar 

  45. Bruckman LS, Wheeler NR, Ma J, Wang E, Wang CK, Chou I, Sun J, French RH (2013) Statistical and domain analytics applied to PV module lifetime and degradation science. IEEE Access 1:384–403. https://doi.org/10.1109/ACCESS.2013.2267611

    Article  Google Scholar 

  46. Q-Lab (2019) A choice of lamps for the QUV accelerated weathering tester, vol. LU-8160. https://www.q-lab.com/products/quv-weathering-tester/quv

  47. Murray MP, Bruckman LS, French RH (2012) Photodegradation in a stress and response framework: poly(methyl methacrylate) for solar mirrors and lens. J Photonics Energy 2(1):022004. https://doi.org/10.1117/1.JPE.2.022004

    Article  CAS  Google Scholar 

  48. Committee AE (2020) ASTM E313: Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. https://doi.org/10.1520/E0313-20

  49. Committee AD (2021) ASTM D1003: standard test method for haze and luminous transmittance of transparent plastics. https://doi.org/10.1520/D1003-21

  50. French RH, Tran HV (2009) Immersion lithography: photomask and wafer-level materials. Annu Rev Mater Res 39(1):93–126. https://doi.org/10.1146/annurev-matsci-082908-145350

    Article  CAS  Google Scholar 

  51. Murray MP, Bruckman LS, French RH (2012) Durability of materials in a stress-response framework: acrylic materials for photovoltaic systems. In: MRS online proceedings library archive, vol. 1391. https://doi.org/10.1557/opl.2012.1241

  52. Kronemeijer AJ, Pecunia V, Venkateshvaran D, Nikolka M, Sadhanala A, Moriarty J, Szumilo M, Sirringhaus H (2014) Two-dimensional carrier distribution in top-gate polymer field-effect transistors: correlation between width of density of localized states and urbach energy. Adv Mater 26(5):728–733. https://doi.org/10.1002/adma.201303060

    Article  CAS  Google Scholar 

  53. (1991) The electronic density of states. In: Street RA (Ed.) Hydrogenated amorphous silicon. Cambridge solid state science series, pp. 62–94. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511525247.004

  54. Yang MK, French RH, Tokarsky EW (2008) Optical properties of Teflon® AF amorphous fluoropolymers. J Micro/Nanolithogr MEMS MOEMS 7(3):033010. https://doi.org/10.1117/1.2965541

    Article  CAS  Google Scholar 

  55. Bahgat AA, El-Samanoudy MM, Sabry AI (1999) Optical and electrical properties of binary WO3-Pb3O4 glasses. J Phys Chem Solids 60(12):1921–1931. https://doi.org/10.1016/S0022-3697(99)00211-5

    Article  CAS  Google Scholar 

  56. Huang W-H, Wheeler N, Klinke A, Xu Y, Du W, Verma AK, Gok A, Gordon D, Wang Y, Liu J, Curran A, Fada J, Ma X, Braid J, Carter J, Bruckman L, French R (2018) netSEM: network structural equation modeling. The comprehensive R archive network

  57. Dirac PAM (1939) A new notation for quantum mechanics. In: Mathematical proceedings of the Cambridge philosophical society, vol. 35(3), pp., 416–418. https://doi.org/10.1017/S0305004100021162

  58. Martin JW, Dickens B, Waksman D, Bentz DP, Byrd WE, Embree E, Roberts WE (1987) Thermal degradation of poly(methyl methacrylate) at 50\(^\circ \)C to 125\(^\circ \)C. J Appl Polym Sci 34(1):377–393. https://doi.org/10.1002/app.1987.070340130

    Article  CAS  Google Scholar 

  59. Shlyapintokh VY, Gol’Denberg VI (1974) Effect of photostabilizers on the rate of photodegradation of polymethylmethacrylate. Eur Polym J 10(8):679–684. https://doi.org/10.1016/0014-3057(74)90179-7

    Article  CAS  Google Scholar 

  60. Bowden MJ, Chandross EA, Kaminow IP (1974) Mechanism of refractive index increase in photosensitized poly(methyl methacrylate). Polym Eng Sci 14(7):494–497. https://doi.org/10.1002/pen.760140706

    Article  CAS  Google Scholar 

  61. Franois-Heude A, Richaud E, Desnoux E, Colin X (2014) Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation. Polym Degrad Stab 100:10–20. https://doi.org/10.1016/j.polymdegradstab.2013.12.038

    Article  CAS  Google Scholar 

  62. Gordon DA, Zhan Z, Bruckman LS (2019) Characterizing the weathering induced degradation of poly(ethylene-terephthalate) using parafac modeling of fluorescence spectra. Polym Degrad Stab 161:85–94. https://doi.org/10.1016/j.polymdegradstab.2019.01.006

    Article  CAS  Google Scholar 

  63. Rashidian M, Dorranian D (2014) Low-intensity UV effects on optical constants of PMMA film. J Theor Appl Phys 8(2):121. https://doi.org/10.1007/s40094-014-0121-0

    Article  Google Scholar 

  64. Johnston PK, Doyle E, Orzel RA (1988) Acrylics: a literature review of thermal decomposition products and toxicity. J Am Coll Toxicol 7(2):139–200. https://doi.org/10.3109/10915818809014519

    Article  CAS  Google Scholar 

  65. Babo S, Ferreira JL, Ramos AM, Micheluz A, Pamplona M, Casimiro MH, Ferreira LM, Melo MJ (2020) Characterization and long-term stability of historical PMMA: impact of additives and acrylic sheet industrial production processes. Polymers 12(1010):2198. https://doi.org/10.3390/polym12102198

    Article  CAS  Google Scholar 

  66. Ishida T, Kitagaki R, Hagihara H, Elakneswaran Y (2021) Role of moisture in photo-ageing -macromolecular architecture evolution of acrylic-urethane network. Polym Test 96:107123. https://doi.org/10.1016/j.polymertesting.2021.107123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was performed at the SDLE Research Center, which was established through funding by the Ohio Third Frontier, Wright Project Program Award tech 12-004. This work made use of the Rider High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. Micro-indentation measurements were performed at the CWRU Materials for Opto/electronics Research and Education (MORE) Center, a CWRU core facility est. 2011 via Ohio Third Frontier grant TECH 09-021. This material is based upon work supported by the U.S. National Science Foundation Award EEC-2052776 and EEC-2052662 in the MDS-Rely IUCRC Center, under the NSF Solicitation: NSF 20-570 Industry-University Cooperative Research Centers Program (H.H.A, L.S.B). This material is based upon research in the Materials Data Science for Stockpile Stewardship Center of Excellence (MDS3-COE), and supported by the Department of Energy’s National Nuclear Security Administration under Award Number(s) DE-NA0004104 (R.H.F and J.C.J). This work was performed, in part, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-853607-DRAFT (J.C.J). The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura S. Bruckman.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aung, H.H., Li, D., Liu, J. et al. Lifetime and Degradation Study of Poly(Methyl Methacrylate) via a Data-Driven Study Protocol Approach. Integr Mater Manuf Innov 12, 349–370 (2023). https://doi.org/10.1007/s40192-023-00322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-023-00322-6

Keywords

Navigation