Skip to main content
Log in

Reliability of Nanofiltration Membrane Process or Brackish Water Treatment in Baghdad City: Module Modeling and Simulation

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2023

This article has been updated

Abstract

The current paper uses a mathematical model to assess the applicability of Nanofiltration membrane on demineralization of Tigris river water. The main aim is to predict the rejection values of multiple ions, with the NF membrane NF270 in a flat sheet membrane module, as well as the water permeation flow and energy consumption. To this end, the extended Nernst–Planck equation was applied in the boundary layer, while Donnan Steric Pore and Dielectric Exclusion (DSPM&DE) model was applied through the active membrane layer. Simulation results revealed that NF membrane can remove 82–99% of bivalent ions and 60–70% of monovalent ions at pressure of 5 bar. In addition, A significant decrease of specific energy consumption (e) was noted with increase of pressure and membrane length. These results suggest that the proposed NF membrane process could be applied in treating brackish water at moderate operational conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Change history

REFERENCES

  1. Sari, M.A. and Chellam, S., Relative contributions of organic and inorganic fouling during nanofiltration of inland brackish surface water, J. Membr. Sci., 2017, vol. 523, pp. 68–76. https://doi.org/10.1016/j.memsci.2016.10.005

    Article  CAS  Google Scholar 

  2. Ribera, G., Llenas, L., Martinez, X., Rovira, M. and De Pablo, J., Comparison of nanofiltration membranes’ performance in flat sheet and spiral wound configurations: A scale-up study, Desalin. Water Treat., 2013, vol. 51, nos. 1–3, pp. 458–468. https://doi.org/10.1080/19443994.2012.714527

  3. Chakrabortty, S., Roy, M., and Pal, P., Removal of fluoride from contaminated groundwater by crossflow nanofiltration: Transport modeling and economic evaluation, Desalination, 2013, vol. 313, pp. 115–124. https://doi.org/10.1016/j.desal.2012.12.021

    Article  CAS  Google Scholar 

  4. Jeihanipour, A., Shen, J., Abbt-Braun, G., Huber, S.A., Mkongo, G., and Schäfer, A.L., Seasonal variation of organic matter characteristics and fluoride concentration in the Maji ya Chai River (Tanzania): Impact on treatability by nanofiltration/reverse osmosis, Sci. Total Environ., 2018, vols. 637–638, pp. 1209–1220. https://doi.org/10.1016/j.scitotenv.2018.05.113

  5. Klüpfel, A.M. and Frimmel, F.H., Nanofiltration of river water—fouling, cleaning and micropollutant rejection, Desalination, 2010, vol. 250, no. 3, pp. 1005–1007. https://doi.org/10.1016/j.desal.2009.09.091

    Article  CAS  Google Scholar 

  6. Van der Bruggen, B., Hawrijk, I., Cornelissen, I., and Vandecasteele, C., Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes, Sep. Purif. Technol., 2003, vol. 31, no. 2, pp. 193–201. https://doi.org/10.1016/S1383-5866(02)00184-3

    Article  CAS  Google Scholar 

  7. López-Ortiz, C.M., Sentana-Gadea, I., Varó-Galvañ, P., Maestre-Pérez, S.E., and Prats-Rico, D., The use of combined treatments for reducing parabens in surface waters: Ion-exchange resin and nanofiltration, Sci. Total Environ., 2018, vol. 639, pp. 228–236. https://doi.org/10.1016/j.scitotenv.2018.05.150

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Shen, J. and Schäfer, A.I., Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis, Sci. Total. Environ., 2016, vols. 527–528, pp. 520–529. https://doi.org/10.1016/j.scitotenv.2015.04.037

  9. Foureaux, A.F.S., Reis, E.O., Lebron, Y., Moreira, V., Santos, L.V., Amaral, M.S., and Lange, L.C., Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis, Sep. Purif. Technol., 2019, vol. 212, pp. 171–179. https://doi.org/10.1016/j.seppur.2018.11.018

    Article  CAS  Google Scholar 

  10. Bi, F., Zhao, H., Zhou, Z., Zhang, L. and Gao, C., Optimal design of nanofiltration system for surface water treatment, Chin. J. Chem. Eng., 2016, vol. 24, no. 12, pp. 1674–1679. https://doi.org/10.1016/j.cjche.2016.05.012

    Article  CAS  Google Scholar 

  11. AL-Dulaimi, G.A. and Younes, M.K., Assessment of potable water quality in Baghdad City, Iraq, Air, Soil Water Res., 2017, vol. 10, pp. 1–5. https://doi.org/10.1177/1178622117733441

    Article  CAS  Google Scholar 

  12. Fadhil, S., Nanofiltration membranes for toxic lead removal: Contribution of various mass transfer mechanisms on membrane performance, Indian Chem. Eng., 2021, vol. 63, no. 1, pp. 13–21. https://doi.org/10.1080/00194506.2019.1684844

    Article  ADS  CAS  Google Scholar 

  13. Parkhurst, D.L. and Appelo, C.A.J., User’s guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resour. Invest. Rep., 1999, ser. no. 99-4259. https://doi.org/10.3133/wri994259

  14. Geraldes, V. and Afonso, M.D., Prediction of the concentration polarization in the nanofiltration/reverse osmosis of dilute multi-ionic solutions, J. Membr. Sci. 2007, vol. 300, nos. 1–2, pp. 20–27. https://doi.org/10.1016/j.memsci.2007.04.025

  15. Senthilmurugan, S., Ahluwalia, A., and Gupta, S. K., Modeling of a spiral-wound module and estimation of model parameters using numerical techniques, Desalination., 2005, vol. 173, no. 3, pp. 269–286. https://doi.org/10.1016/j.desal.2004.08.034

    Article  CAS  Google Scholar 

  16. Evangelista, F., An improved analytical method for the design of spiral-wound modules, Chem. Eng. J., 1988, vol. 38, no. 1, pp. 33–40. https://doi.org/10.1016/0300-9467(88)80051-0

    Article  CAS  Google Scholar 

  17. Bowen, W.R., Welfoot, J.S., and Williams, P.M., Linearized transport model for nanofiltration: Development and assessment, AIChE J., 2002, vol. 48, no. 4, pp. 760–773. https://doi.org/10.1002/aic.690480411

    Article  ADS  CAS  Google Scholar 

  18. Geraldes, V. and Alves, A.M.B., Computer program for simulation of mass transport in nanofiltration membranes, J. Membr. Sci., 2008, vol. 321, no. 2, pp. 172–182. https://doi.org/10.1016/j.memsci.2008.04.054

    Article  CAS  Google Scholar 

  19. Micari, M., Diamantidou, D., Heijman, B., Moser, M., Haidari, A., Spaniers, H., and Bertsch, V., Experimental and theoretical characterization of commercial nanofiltration membranes for the treatment of ion exchange spent regenerant, J. Membr. Sci., 2020, vol. 606, article no. 118117. https://doi.org/10.1016/j.memsci.2020.118117

    Article  CAS  Google Scholar 

  20. Oatley, D.L., Llenas, L., Pérez, R., Williams, P.M., Martínez-Lladó, X., and Rovira, M., Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation, Adv. Colloid Interface Sci., 2012, vol. 173, pp. 1–11. https://doi.org/10.1016/j.cis.2012.02.001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufyan Fadhil.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhil, S. Reliability of Nanofiltration Membrane Process or Brackish Water Treatment in Baghdad City: Module Modeling and Simulation. Theor Found Chem Eng 57, 589–596 (2023). https://doi.org/10.1134/S0040579523040449

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040449

Navigation