Skip to main content
Log in

Trends and Prospects in the Development of Gas-Lift and Bubble Equipment Designs

  • PROCESSES AND APPARATUSES OF CHEMICAL TECHNOLOGY
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The work is devoted to the review and analysis of gas-lift and bubble equipment designs. In particular, the paper presents the study, generalization, and critical appraisal of scientific and industrial innovations which reflect the currently existing trends in the development of gas-lift and bubble equipment designs. Based on the obtained data, the accumulated practical and theoretical experience in designing gas-lift and bubble equipment is systematized, and the possible prospects of their future development are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Besagni, G., Inzoli, F., and Ziegenhein, T., Two-phase bubble columns: A comprehensive review, Chem. Eng., 2018, vol. 2, no. 2, article no. 13. https://doi.org/10.3390/chemengineering2020013

    Article  CAS  Google Scholar 

  2. Deen, N.G., Mudde, R.F., Kuipers, J.A.M., Zehner, P., and Kraume, M., Bubble columns, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2010. https://doi.org/10.1002/14356007.b04_275.pub2

  3. Leonard, C., Ferrasse, J.-H., Boutin, O., Lefevre, S., and Viand, A., Bubble column reactors for high pressures and high temperatures operation, Chem. Eng. Res. Des., 2015, vol. 100, pp. 391–421. https://doi.org/10.1016/j.cherd.2015.05.013

    Article  CAS  Google Scholar 

  4. Liao, Q., Chang, J., Herrmann, C., and Xia, A., Bioreactors for Microbial Biomass and Energy Conversion, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-7677-0

  5. Hennigs, C., Fermentative production methods, in Biotransformation of Agricultural Waste and By-Products, Poltronieri, P. and D’Urso, O., Eds., Amsterdam: Elsevier, 2016, pp. 189–217. https://doi.org/10.1016/C2015-0-00053-3

  6. Kantarci, N., Borak, F., and Ulgen, K.O., Bubble column reactors, Proc. Biochem. Soc., 2005, vol. 40, no. 7, pp. 2263–2283. https://doi.org/10.1016/j.procbio.2004.10.004

    Article  CAS  Google Scholar 

  7. Rollbusch, P., Bothe, M., Becker, M., Ludwig, M., Grünewald, M., Schlüter, M., and Franke, R., Bubble columns operated under industrially relevant conditions—Current understanding of design parameters, Chem. Eng. Sci., 2015, vol. 126, pp. 660–678. https://doi.org/10.1016/j.ces.2014.11.061

    Article  CAS  Google Scholar 

  8. Shaofen, L., Multiple-Phase Reactors, in Reaction Engineering, Oxford: Elsevier, 2016, ch. 9, pp. 405–444. https://doi.org/10.1016/B978-0-12-410416-7.00009-4

  9. Vasiliev, P.D., Stepykin, A.V., Sidyagin, A.A., and Ruzanov, S.R., Development tendencies of barbotage assemblies with in-built heat-exchange elements, Materialy XII Vserossiiskoi nauchno-prakticheskoi conferentsii studentov, aspirantov i molodykh uchenylh s mezhdunarodnym uchastiem “Tekhnologii i oborudovanie khimicheskoi, biotekhnologicheskoi i pishchevoi promyshlennosti” (Proc. XII All-Russian Sci.–Pract. Conference of Students, Postgraduates, and Young Scientists with International Participation “Technologies and Equipment of Chemical, Biotechnological and Food Industry”), Biisk, 2019, pp. 22–24.

  10. Luo, L., Liu, F., Xu, Y., and Yuan, J., Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with different spargers, Chem. Eng. J., 2011, vol. 175, pp. 494–504. https://doi.org/10.1016/j.cej.2011.09.078

    Article  CAS  Google Scholar 

  11. Kulkarni, A.V. and Joshi, J.B., Design and selection of sparger for bubble column reactor. Part I: Performance of different spargers, Chem. Eng. Res. Des., 2011, vol. 89, no. 10, pp. 1972–1985. https://doi.org/10.1016/j.cherd.2011.01.004

    Article  CAS  Google Scholar 

  12. Kulkarni, A.V. and Joshi, J.B., Design and selection of sparger for bubble column reactor. Part II: Optimum sparger type and design, Chem. Eng. Res. Des., 2011, vol. 89, no. 10, pp. 1986–1995. https://doi.org/10.1016/j.cherd.2011.01.014

    Article  CAS  Google Scholar 

  13. RF Patent 2388743, 2010.

  14. Krishna, R., Ellenberger, J., Urseanu, M.I., and Keil, F.J., Utilisation of bubble resonance phenomena to improve gas–liquid contact, Naturwissenschaften, 2000, vol. 87, no. 10, pp. 455–459. https://doi.org/10.1007/s001140050758

    Article  CAS  PubMed  Google Scholar 

  15. Krishna, R. and Ellenberger, J., Improving gas–liquid contacting in bubble columns by vibration excitement, Int. J. Multiphase Flow, 2002, vol. 28, no. 7, pp. 1223–1234. https://doi.org/10.1016/s0301-9322(02)00016-2

    Article  CAS  Google Scholar 

  16. Elbing, B.R., Still, A.L., and Ghajar, A.J., Review of bubble column reactors with vibration, Ind. Eng. Chem. Res., 2015, vol. 55, no. 2, pp. 385–403. https://doi.org/10.1021/acs.iecr.5b02535

    Article  CAS  Google Scholar 

  17. Still, A.L., Ghajar, A.J., and O’Hern, T.J., Effect of amplitude on mass transport, void fraction and bubble size in a vertically vibrating liquid–gas bubble column reactor, Proc. ASME 2013 Fluids Engineering Division Summer Meeting, Nevada, USA, 2013, paper nos. FEDSM2013-16116, V01CT17A004. https://doi.org/10.1115/FEDSM2013-16116

  18. Kushchev, L.A., Suslov, D.Yu., and Temnikov, D.O., Technologies of biogas manufacturing at anaerobic fermentation of organic substances, Sci. Time, 2015, no. 10, pp. 204–210.

  19. Youssef, A.A., Al-Dahhan, M.H., and Dudukovic, M.P., Bubble columns with internals: A review, Int. J. Chem. React. Eng., 2013, vol. 11, no. 1, pp. 169–223. https://doi.org/10.1515/ijcre-2012-0023

    Article  Google Scholar 

  20. Sultan, A.J., Sabri, L.S., and Al-Dahhan, M.H., Impact of heat-exchanging tube configurations on the gas holdup distribution in bubble columns using gamma-ray computed tomography, Int. J. Multiphase Flow, 2018, vol. 106, pp. 202–219. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.006

    Article  CAS  Google Scholar 

  21. Jasim, A.A., Sultan, A.J., and Al-Dahhan, M.H., Impact of heat exchanging internals configurations on the gas holdup and bubble properties in a bubble column, Int. J. Multiphase Flow, 2019, vol. 112, pp. 63–82. https://doi.org/10.1016/j.ijmultiphaseflow.2018.11.008

    Article  CAS  Google Scholar 

  22. Martinelli, M., Gnanamani, M.K., LeViness, S., Jacobs, G., and Shafer, W.D., An overview of Fischer–Tropsch synthesis: XtL processes, catalysts and reactors, Appl. Catal., A, 2020, vol. 608, article no. 117740. https://doi.org/10.1016/j.apcata.2020.117740

  23. Jacobs, G. and Davis, B.H., Reactors approaches for Fischer–Tropsch synthesis, in Multiphase Catalytic Reactors: Theory, Design, Manufacturing and Applications, Önsan, Z.I. and Avcı, A.K., Eds., Hoboken, NJ: Wiley, 2016, pp. 269–294. https://doi.org/10.1002/9781119248491

  24. Laptev, A.G., Farakhov, M.I., and Lapteva, E.A., Problems and solutions of large-scale transition in chemical technology, Tr. Akademenergo, 2019, no. 4, pp. 21–35. https://doi.org/10.34129/2070-4755-2019-57-4-21-35

  25. RF Patent 2268086, 2006.

  26. Jakobsen, H.A., Bubble Column Reactors, in Chemical Reactor Modeling, Cham: Springer, 2014, pp. 883–935. https://doi.org/10.1007/978-3-319-05092-8

  27. Deshpande, S.S., Walker, J., Pressler, J., and Hichman, D., Effect of packing size on packed bubble column hydrodynamics, Chem. Eng. Sci., 2018, vol. 186, pp. 199–208. https://doi.org/10.1016/j.ces.2018.04.045

    Article  CAS  Google Scholar 

  28. Duduković, M.P., Larachi, F., and Mills, P.L., Multiphase catalytic reactors: A perspective on current knowledge and future trends, Catal. Rev., 2002, vol. 44, no. 1, pp. 123–246. https://doi.org/10.1081/CR-120001460

    Article  Google Scholar 

  29. Therning, P. and Rasmuson, A., Liquid dispersion and gas holdup in packed bubble columns at atmospheric pressure, Chem. Eng. J., 2001, vol. 81, nos. 1–3, pp. 69–81. https://doi.org/10.1016/S1385-8947(00)00225-4

  30. RF Patent 141498, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Vasiliev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, P.D., Sidyagin, A.A., Stepykin, A.V. et al. Trends and Prospects in the Development of Gas-Lift and Bubble Equipment Designs. Theor Found Chem Eng 57, 745–753 (2023). https://doi.org/10.1134/S0040579523040310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040310

Keywords:

Navigation