Skip to main content
Log in

Methods of Optimization Thermodynamics in Distillation Processes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The methodology of optimization thermodynamics was used for the mathematical description and optimization of distillation processes. The following problems were considered: construction of a set of feasible operating conditions of columns separating binary and multicomponent mixtures, selection of the sequence of separation of a multicomponent mixture, feasibility of using a separating agent, selection of the feed temperature and feed point, and optimization of parallel and sequential systems of distillation columns. Calculation formulas for entropy production and heat transfer coefficients in the reboiler and reflux condenser of the column were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Novikov, I.I., Effective efficiency of nuclear power plant, At. Energ., 1957, vol. 3, no. 11, pp. 409–412.

    CAS  Google Scholar 

  2. Curzon, F.L. and Ahlborn, B., Efficiency of a Carnot engine at maximum power output, Am. J. Phys., 1975, vol. 43, pp. 22–24. .https://doi.org/10.1119/1.10023

    Article  Google Scholar 

  3. Berry, R.S., Kazakov, V.A., Sieniutycz, S., Szwast, Z., and Tsirlin, A.M., Thermodynamic. Optimization of Finite-Time Processes, Chichester: Wiley, 1999.

    Google Scholar 

  4. Chen, L., Wu, C., and Sun, F., Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn., 1999, vol. 24, no. 4, pp. 327–359. https://doi.org/10.1515/JNETDY.1999.020

    Article  CAS  Google Scholar 

  5. Tsirlin, A.M., Mironova, V.A., Amelkin, S.A., and Kazakov, V.A., Finite-time thermodynamics: Conditions of minimal dissipation for thermodynamic processes with given rate, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 1998, vol. 58, no. 1, pp. 215–223. https://doi.org/10.1103/PhysRevE.58.215

    Article  CAS  Google Scholar 

  6. Gel’perin, N.I., Osnovnye protsessy i apparaty khimicheskoi tekhnologii (The Main Processes of Chemical Technology), Moscow: Khimiya, 1981.

  7. Petlyuk, F.B. and Serafimov, L.A., Mnogokomponentnaya rektifikatsiya. Teoriya i raschet (Multicomponent Rectification. Theory and Calculations), Moscow: K-himiya, 1983.

  8. Balunov, A.I. and Maikov, V.P., Entropy and information in the rectification theory, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2003, vol. 46, no. 9, pp. 54–67.

    Google Scholar 

  9. Planovskii, A.N. and Nikolaev, P.I., Protsessy i apparaty khimicheskoi I neftekhimicheskoi tekhnologii (Processes and Devices of Chemical and Petrochemical Technology), Moscow: Khimiya, 1987.

  10. Holland, C.D., Fundamentals of Multicomponent Distillation. New York: McGraw-Hill, 1981.

    Google Scholar 

  11. Kister, H.Z., Distillation Design, New York: McGraw-Hill, 1992.

    Google Scholar 

  12. Tsirlin, A.M., Balunov, A.I., and Sukin, I.A., Estimates of energy consumption and selection of optimal distillation sequence for multicomponent distillation, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 250–259. https://doi.org/10.1134/S0040579516030131

    Article  CAS  Google Scholar 

  13. Tsirlin, A.M., Sukin, I.A., Balunov, A.I., and Schwalbe, K., The rule of temperature coefficients for selection of optimal separation sequence for multicomponent mixtures in thermal systems, J. Non-Equilib. Thermodyn., 2017, vol. 42, no. 4, pp. 359–369. https://doi.org/10.1515/jnet-2017-0024

    Article  CAS  Google Scholar 

  14. Tsirlin A.M., Mazikov A.A. Thermodynamic indicators of the perfection of heat exchange systems, J. Eng. Phys. Thermophys., 2023, vol. 96, no. 3, pp. 516–531.

    Article  Google Scholar 

  15. Rozonoer, L.I. and Tsirlin, A.M., Optimal control of thermodynamic processes. I., Avtom. Telemekh., 1983, no. 1, pp. 70–79.

  16. Zaeva, M.A., Tsirlin, A.M., and Sukin, I.A., Influence of the kinetics of heat and mass transfer in a binary-rectification column on the realizability range of its regimes, J. Eng. Phys. Thermophys., 2018, vol. 91, no. 2, pp. 515–530. https://doi.org/10.1007/s10891-018-1772-5

    Article  CAS  Google Scholar 

  17. Ziyatdinov, N.N., Ostrovskii, G.M., and Emel’yanov, I.I., Designing a heat exchange system upon the reconstruction and synthesis of optimal systems of distillation columns, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, pp. 178–187. https://doi.org/10.1134/S0040579516020147

    Article  CAS  Google Scholar 

  18. Rozonoer, L.I. and Tsirlin, A.M., Optimal control of thermodynamic processes. II., Avtom. Telemekh., 1983, no. 2, pp. 88–101.

  19. Rozonoer, L.I. and Tsirlin, A.M., Optimal control of thermodynamic processes. III., Avtom. Telemekh., 1983, no. 3, pp. 50–64.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-61-46013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tsirlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsirlin, A.M., Balunov, A.I., Sukin, I.A. et al. Methods of Optimization Thermodynamics in Distillation Processes. Theor Found Chem Eng 57, 537–548 (2023). https://doi.org/10.1134/S0040579523040486

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040486

Keywords:

Navigation