Skip to main content
Log in

Choice of Conditions for Drying Fluxes for Magnesium Alloys Based on Thermal Analysis Data

  • TECHNOLOGY OF INORGANIC SUBSTANCES AND MATERIALS
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The dehydration of magnesium-chloride-based fluxes for magnesium alloys is studied by differential scanning calorimetry, thermogravimetric analysis, and IR spectroscopy analysis of the released gases. The results obtained make it possible to choose the temperature–time conditions for drying fluxes so as to ensure uniform mass loss, which reduces the occurrence of structural stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Magnesium Alloys—Design, Processing and Properties, Czerwinski, F., Ed., IntechOpen, 2011. https://doi.org/10.5772/560

  2. Kablov, E.N., Strategical areas of developing materials and their processing technologies for the period up to 2030, Aviat. Mater. Tekhnol., 2012, no. 5, pp. 7–17. https://journal.viam.ru/en/system/files/uploads/pdf/2012/2012_S_1_1.pdf. Cited March 31, 2023.

  3. Hombergsmeier, E., Magnesium for aerospace applications, Proc. Manchester Sch. Mater., 2010, no.7, p. 13.

  4. Kulekci, M.K., Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851–865. https://doi.org/10.1007/s00170-007-1279-2

    Article  Google Scholar 

  5. Mostyaev, I.V. and Akinina, M.V., Features and development trends in the field of heat treatment of magnesium alloys, Proc. VIAM, 2018, no. 7, pp. 41–48. https://doi. org/https://doi.org/10.18577/2307-6046-2018-0-7-41-48

  6. Trofimov, N.V., Leonov, A.A., Duyunova, V.A., and Uridiya, Z.P., Casting magnesium alloys, Proc. VIAM, 2016, no. 12, pp. 3–12. https://doi.org/10.18577/2307-6046-2016-0-12-1-1

  7. Kablov, E.N., Volkova, E.F., and Filonova, E.V., Effect of REE on the phase composition and properties of a new refractory magnesium alloy of the Mg–Zn–Zr–REE system, Met. Sci. Heat Treat., 2017, vol. 59, no. 7, pp. 415–421. https://doi.org/10.1007/s11041-017-0165-2

    Article  CAS  Google Scholar 

  8. Mukhina, I.Yu., Uridiya, Z.P., and Trofimov, N.V., Corrosion resistant casting magnesium alloys, Aviat. Mater. Tekhnol., 2017, no. 2, pp. 15–23. https://doi.org/10.18577/2071-9140-2017-0-2-15-23

  9. Levchuk, V.V., Trapeznikov, A.V., Pentyukhin, S.I., and Leonov, A.A., Casting methods for a thin-walled part from silumin, Proc. VIAM, 2016, no. 6, pp. 30–38. https://doi.org/10.18577/2307-6046-2018-0-6-30-38

  10. Luo, A.A., Magnesium casting technology for structural applications, J. Magnesium Alloys, 2013, vol. 1, no. 1, pp. 2–22. https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  11. ASM Specialty Handbook: Magnesium and Magnesium Alloys, Avedesian, M.M., Baker, H., Eds., Materials Park, OH: ASM International, 1999.

    Google Scholar 

  12. Baek, U.-H., Lee, B.-D., Lee, K.-W., Joon, J.-Y., Han, G.-S., and Han, J.-W., Removal of Ca from magnesium melt by flux refining, Mater. Trans., 2016, vol. 57, no. 7, pp. 1156–1164. https://doi.org/10.2320/matertrans.M2015426

    Article  CAS  Google Scholar 

  13. Leonov, A.A., Duyunova, V.A., Uridiya, Z.P., and Trofimov, N.V., New universal flaky flux for cast magnesium alloys, Russ. Metall., 2019, vol. 2019, no. 3, pp. 268–272. https://doi.org/10.1134/S003602951903008X

    Article  Google Scholar 

  14. Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 2011, vol. 520, nos. 1–2, pp. 1–19. https://doi.org/10.1016/j.tca.2011.03.034

  15. Rycerz, L., Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements, J. Therm. Anal. Calorim., 2013, vol. 113, no. 1, pp. 231–238. https://doi.org/10.1007/s10973-013-3097-0

    Article  CAS  Google Scholar 

  16. Mohan, G., Venkataraman, M., Gomez-Vidal, J., and Coventry, J., Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage, Energy Convers. Manage., 2018, vol. 167, pp. 156–164. https://doi.org/10.1016/j.enconman.2018.04.100

    Article  CAS  Google Scholar 

  17. Nefedov, N.I., Guseva, M.A., Khaskov, M.A., Ignat’eva, L.N., and Buznik, V.M., Peculiarities of temperature behavior of low-molecular fluorooligomers, Polym. Sci., Ser. A, 2017, vol. 59, no. 4, pp. 496–505. https://doi.org / 10.1134 / S0965545X17040034

  18. Baek U.-H., Lee B.-D., Lee K.-W., Yoon J.-Y., Han G.-S., Han J.-W. Removal of Ca from Magnesium Melt by Flux Refining // Materials Transactions. 2016. V. 57. № 7. P. 1156–1164. https://doi.org /10.2320/matertrans. M2015426

  19. Behl, W.K. and Gaur, H.C., Differential thermal analysis of magnesium chloride hydrates, Proc. Natl. Inst. Sci., 1961, vol. 27, pp. 33–37.

    CAS  Google Scholar 

  20. Rammelberg H.U., Schmidt T., and Ruck W., Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage–kinetics and energy release, Energy Procedia, 2012, vol. 30, pp. 362–369. https://doi.org/10.1016/j.egypro.2012.11.043

    Article  CAS  Google Scholar 

  21. Sina, K.-N., Oxides in the dehydration of magnesium chloride hexahydrate, PhD (Eng.) Thesis, Montreal: McGill Univ., 2005.

  22. Huang, Q., Lu, G., Wang, J., and Yu, J., Thermal decomposition mechanisms of MgCl2 . 6H2O and MgCl2 . H2O, J. Anal. Appl. Pyrolysis, 2011, vol. 91, no. 1, pp. 159–164. https://doi.org/10.1016/j.jaap.2011.02.005

    Article  CAS  Google Scholar 

  23. Khaskov M.A., Davydova E.A., Valueva M.I., Shestakov A.M. A Thermokinetic Study of a Polycarbosilane- and Oligovinylsilazane-Based Ceramic- Forming Composition // Inorganic Materials. 2018. V. 54. P. 1162–1167. https://doi.org/10.1134/S0020168518110080

  24. Khaskov, M.A., Shestakov, A.M., Sorokin, O.Yu., and Zelenina, I.V., Synthesis of carbon matrix with tunable carbide formation ability for reactive infiltration techniques, Ceram. Int., 2020, vol. 46, no. 13, pp. 21632–21637. https://doi.org/10.1016/j.ceramint.2020.05.269

    Article  CAS  Google Scholar 

  25. Senberber, F.T. and Derun, E.M., Thermal kinetics and thermodynamics of the dehydration reaction of inyoite (Ca2B6O6(OH)10 . 8H2O), Glass Phys. Chem., 2020, vol. 46, no. 1, pp. 64–71. https://doi.org/10.1134/S1087659620010162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khaskov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaskov, M.A., Leonov, A.A., Trofimov, N.V. et al. Choice of Conditions for Drying Fluxes for Magnesium Alloys Based on Thermal Analysis Data. Theor Found Chem Eng 57, 653–659 (2023). https://doi.org/10.1134/S0040579523040164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040164

Navigation