Skip to main content
Log in

Flax Fibers: New Opportunities for “Green” Nanotechnology

  • TECHNOLOGY OF ORGANIC SUBSTANCES
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The conditions for the synthesis of stable hydrosols of metallic silver in the presence of flax fiber extracts were studied by “green chemistry.” It was proved that the synthesized sols can be used to impart the antimicrobial activity or biosecurity to cellulose-containing materials. The synthesis of ultrafine silver particles in the presence of accompanying natural impurities of flax fibers, isolated from them during high-temperature alkaline treatment, was studied by spectrophotometry, photon correlation spectroscopy, and visual observation. The effect of the composition of the extract on the dynamics of formation of stable silver nanoparticles was determined. It was proved by IR spectroscopy and potentiometric titration that increased alkalinity of the cooking solution leads not only to an increase in the amount of impurities in solution, but also to their destruction, and the resulting set of reducing substances formed in solution can act as a reducing agent for silver ions even at low extraction temperatures. It was also proved that the antimicrobial activity with respect to the test cultures of the synthesized sols and the cellulose tissue treated with them depends on the synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Patil, R.S., Kokate, M.R., and Kolekar, S.S., Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity, Spectrochim. Acta, Part A, 2012, vol. 91, pp. 234–238. https://doi.org/10.1016/j.saa.2012.02.009

    Article  CAS  Google Scholar 

  2. Kelf, T.A., Sreenivasan, V.K.A., Sun, J., Kim, E.J., Goldys, E.M., and Zvyagin, A.V., Non-specific cellular uptake of surface-functionalized quantum dots, Nanotecnology, 2010, vol. 21, no. 28, article no. 285105. https://doi.org/10.1088/0957-4484/21/28/285105

    Article  CAS  Google Scholar 

  3. Xin, H., Sha, X., Jiang, X., Chen, L., Law, K., Gu, J., Chen, Y., Wang, X., and Fang, X., The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles, Biomaterials, 2012, vol. 33, no. 5, pp. 1673–1681. https://doi.org/10.1016/j.biomaterials.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  4. Shrestha, R., Joshi, D.R., Gopali, J., and Piya, S., Oligodynamic action of silver, copper and brass on enteric bacteria isolated from water of Kathmandu Valley, Nepal J. Sci. Technol., 2009, vol. 10, pp. 189–193. https://doi.org/10.3126/njst.v10i0.2959

    Article  Google Scholar 

  5. Sharma, V.K., Yngard, R.A., and Lin, Y., Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 2009, vol. 145, nos. 1–2, pp. 83–96. https://doi.org/10.1016/j.cis.2008.09.002

  6. Behravan, M., Panahi, A.H., Naghizadeh, A., Ziaee, M., Mahdavi, R., and Mirzapour, A., Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity, Int. J. Biol. Macromol., 2019, vol. 124, pp. 148–154. https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  CAS  PubMed  Google Scholar 

  7. Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E., and Kalinina, N.O., “Green” nanotechnologies: Synthesis of metal nanoparticles using plants, Acta Nat., 2014, vol. 6, no. 1, pp. 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44

    Article  CAS  Google Scholar 

  8. Ma, S., Mu, J., Qu, Y., and Jiang, L., Effect of refluxed silver nanoparticles on inhibition and enhancement of enzymatic activity of glucose oxidase, Colloids Surf., A, 2009, vol. 345, nos. 1–3, pp. 101–105. https://doi.org/10.1016/j.colsurfa.2009.04.038

  9. Gasilova, E.R., Toropova, A.A., Bushin, S.V., Khripunov, A.K., Grishchenko, L.A., and Aleksandrova, G.P., Light scattering from aqueous solutions of colloid metal nanoparticles stabilized by natural polysaccharide arabinogalactan, J. Phys. Chem. B, 2010, vol. 114, no. 12, pp. 4204–4212. https://doi.org/10.1021/jp100018q

    Article  CAS  PubMed  Google Scholar 

  10. Aleksandrova, G.P., Sukhov, B.G., and Trofimov, B.A., Kinetics of silver nanoparticles formation in the biopolymer matrix, Phys., Chem. Appl. Nanostruct., 2015, vol. 1, pp. 492–494. https://doi.org/10.1142/9789814696524_0122

    Article  Google Scholar 

  11. Patil, R.S., Kokate, M.R., and Kolekar, S.S., Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity, Spectrochim. Acta, Part A, 2014, vol. 91, pp. 234–238. https://doi.org/10.1016/j.saa.2012.02.009

    Article  CAS  Google Scholar 

  12. Belova, M.M., Shipunova, V.O., Kotelnikova, P.A., Babenyshev, A.V., Rogozhin, E.A., Cherednichenko, M.Yu., and Deyev, S.M., “Green” synthesis of cytotoxic silver nanoparticles based on secondary metabolites of Lavandula angustifolia mill, Acta Nat., 2019, vol. 11, no. 2, pp. 47–53. https://doi.org/10.32607/20758251-2019-11-2-47-53

    Article  CAS  Google Scholar 

  13. Nadagouda, M.N. and Varma, R.S., Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract, Green Chem., 2008, vol. 10, pp. 859–862. https://doi.org/10.1039/B804703K

    Article  CAS  Google Scholar 

  14. Das, S., Das, J., Samadder, A., Bhattacharyya, S.S., Das, D., and Khuda-Bukhsh, A.R., Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis, and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells, Colloids Surf., B, 2013, vol. 101, pp. 325–336. https://doi.org/10.1016/j.colsurfb.2012.07.008

    Article  CAS  Google Scholar 

  15. Dipankar, C. and Murugan, S., The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts, Colloids Surf., B, 2012, vol. 98, pp. 112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006

    Article  CAS  Google Scholar 

  16. Philip, D., Unni, C., Aromal, S.A., and Vidhu, V.K., Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles, Spectrochim. Acta, Part A, 2011, vol. 78, no. 2, pp. 899–904. https://doi.org/10.1016/j.saa.2010.12.060

    Article  CAS  Google Scholar 

  17. Ravindra, S., Mohan,Y.M., Reddy, N.N., and Raju, K.M., Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”, Colloids Surf., A, 2010, vol. 367, nos. 1–3, pp. 31–40. https://doi.org/10.1016/j.colsurfa.2010.06.013

  18. Begum, N.A., Mondal, S., Basu, S., Laskar, R.A., and Mandal, D., Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts, Colloids Surf., B, 2009, vol. 71, no. 1, pp. 113–118. https://doi.org/10.1016/j.colsurfb.2009.01.012

    Article  CAS  Google Scholar 

  19. Chen, N., Zheng, Y., Yin, J., Li, X., and Zheng, C., Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro, J. Virol. Methods, 2013, vol. 193, no. 2, pp. 470–477. https://doi.org/10.1016/j.jviromet.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  20. Thomsen, A.B., Thygesen, A., Bohn, V., Nielsen, K.V., Pallesen, B., and Jørgensen, M.S., Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and for textiles, Ind. Crops Prod., 2006, vol. 24, no. 2, pp. 113–118. https://doi.org/10.1016/j.indcrop.2005.10.003

    Article  CAS  Google Scholar 

  21. Foulk, J.A., Akin, D.E., and Dodd, R.B., Processing techniques for improving enzyme-retting of flax, Ind. Crops Prod., 2001, vol. 13, no. 3, pp. 239–248. https://doi.org/10.1016/S0926-6690(00)00081-9

    Article  CAS  Google Scholar 

  22. Nair, G.R., Singh, A., Zimniewska, M., and Raghavan. V., Comparative evaluation of physical and structural properties of water retted and non-retted flax fibers, Fibers, 2013, vol. 1, no. 3, pp. 59–69. https://doi.org/10.3390/fib1030059

    Article  Google Scholar 

  23. Bellamy, L.J., The Infra-Red Spectra of Complex Molecules, New York: Wiley, 1963.

    Google Scholar 

  24. Bailey, R.T., Hyde, A.J., and Kim, J.J., The Raman spectra of uniaxially oriented isotactic polypropylene, Spectrochim. Acta, Part A, 1974, vol. 30, no. 1, pp. 91–98. https://doi.org/10.1016/0584-8539(74)80214-X

    Article  CAS  Google Scholar 

  25. Bailey, R., Hyde, A.J., Kim, J.J., and McLeish, J., Raman studies on oriented, high modulus, polyethylene, Spectrochim. Acta, Part A, 1977, vol. 33, no. 12, pp. 1053–1058. https://doi.org/10.1016/0584-8539(77)80153-0

    Article  Google Scholar 

  26. Rabolt, J.F. and Fanconi, B., Raman scattering from finite polytetrafluoroethylene chains and a highly oriented TFE–HFP copolymer monofilament, Macromolecules, 1978, vol. 11, no. 4, pp. 740–745. https://doi.org/10.1021/ma60064a025

    Article  CAS  Google Scholar 

  27. Redox Biochemistry, Banerjee, R., Becker, D.F., Dickman, M.B., Gladyshev, V.N., and Ragsdale, S.W., Eds., Hoboken, NJ: Wiley, 2008. https://doi.org/10.1002/9780470177334

  28. Ung, T., Giersig, M., Dunstan, D., and Mulvaney, P., Spectroelectochemistry of colloidal silver, Langmuir, 1997, vol. 13, no. 6, pp. 1773–1782. https://doi.org/10.1021/la960863z

    Article  CAS  Google Scholar 

  29. Owen, E.A. and Yates, E.L., Precision measurements of crystal parameters, Philos. Mag., 1933, vol. 15, no. 98, pp. 472–478. https://doi.org/10.1080/14786443309462199

    Article  CAS  Google Scholar 

  30. Krutyakov, Yu.A., Kudrinskii, A.A., Olenin, A.Yu., and Lisichkin, G.V., Synthesis and properties of silver nanoparticles: Advances and prospects, Russ. Chem. Rev., 2008, vol. 77, no. 3, pp. 233–257. https://doi.org/10.1070/RC2008v077n03ABEH003751

    Article  CAS  Google Scholar 

  31. Pal, S., Tak, Y.K., and Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., 2007, vol. 73, no. 6, pp. 1712–1720. https://doi.org/10.1128/AEM.02218-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lv, X., Wang, P., Bai, R., Cong, Y., Suo, S., Ren, X., and Chen, C., Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections, Biomaterials, 2014, vol. 35, no. 13, pp. 4195–4203. https://doi.org/10.1016/j.biomaterials.2014.01.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was performed under the government contract at the Krestov Institute of Solution Chemistry, Russian Academy of Sciences (project no. 01201260484) using the instruments of the Multiaccess Center “Upper Volga regional center of physicochemical studies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Dymnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymnikova, N.S., Erokhina, E.V. & Moryganov, A.P. Flax Fibers: New Opportunities for “Green” Nanotechnology. Theor Found Chem Eng 57, 660–669 (2023). https://doi.org/10.1134/S0040579523040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040085

Keywords:

Navigation