Skip to main content
Log in

Physical Feasibility and Synthesis of Heat Exchange Systems According to Thermodynamic Parameters

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The region of physical feasibility of heat exchange systems in the space of their thermodynamic indicators (heat load, dissipation, and thermal conductivity) is constructed in this work. Criteria of thermodynamic perfection for typical two-flow cells are calculated. A condition of thermodynamic equivalence of heat exchange systems is given, and an algorithm for constructing a multiflow system equivalent to a two-flow heat exchanger is proposed. The cases of variable heat capacity, change of the phase state, and different flow hydrodynamics are considered. The constraints on the temperatures of all or some of the flows at the inlet and outlet of the heat exchange system are taken into account. The synthesis involves the choice of the structure of contacts, the values of free parameters of flows, and the distribution of contact areas and heat loads between two-flow heat exchange cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Ostrovskii, G.M., Ziyatdinov, N.N., and Emel’yanov, I.I., Synthesis of optimal systems of simple distillation columns with heat recovery, Dokl. Chem., 2015, vol. 461, no. 1, pp. 89–92. https://doi.org/10.1134/S0012500815030052

    Article  CAS  Google Scholar 

  2. Ziyatdinov, N.N., Ostrovskii, G.M., and Emel’yanov, I.I., Designing a heat exchange system upon the reconstruction and synthesis of optimal systems of distillation columns, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, pp. 178–187. https://doi.org/10.1134/S0040579516020147

    Article  CAS  Google Scholar 

  3. Kafarov, V.V., Meshalkin, V.P., and Perov, V.L., Matematicheskie osnovy avtomatizirovannogo proektirovaniya khimicheskikh proizvodstv (Mathematical Foundations of Computer-aided Design of Chemical Plants), Moscow: Khimiya, 1979.

  4. Brodyanskii, V.M., Fratsher, V., and Mikhalek, K., Eksergeticheskii metod i ego prilozheniya (The Exergy Method and its Applications), Moscow: Energoatomizdat, 1988.

  5. Berry, R.S., Kazakov, V.A., Sieniutycz, S., Szwast, Z., and Tsirlin, A.M., Thermodynamic. Optimization of Finite-Time Processes, Chichester: Wiley, 1999.

    Google Scholar 

  6. Tsirlin, A.M., Mironova, V.A., Amelkin, S.A., and Kazakov, V.A., Finite-time thermodynamics: Conditions of minimal dissipation for thermodynamic processes with given rate, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 1998, vol. 58, no. 1, pp. 215–223. https://doi.org/10.1103/PhysRevE.58.215

    Article  CAS  Google Scholar 

  7. Tsirlin, A.M., Optimal control of the irreversible processes of heat and mass transfer, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1991, no. 2, pp. 171–179.

  8. Andresen, B. and Gordon, J.M., Optimal heating and cooling strategies for heat exchangers design, J. Appl. Phys., 1992, vol. 71, no. 1, pp. 1, pp. 76–79.

  9. Salamon, P., Nitzan, A., Andresen, B., and Berry, R.S., Minimum entropy production and the optimization of heat engines, Phys. Rev. A, 1980, vol. 21, no. 6, pp. 2115–2129. https://doi.org/10.1103/PhysRevA.21.2115

    Article  CAS  Google Scholar 

  10. Tsirlin, A.M., Akhremenkov, A.A., and Grigorevskii, I.N., Minimal irreversibility and optimal distributions of heat transfer surface area and heat load in heat transfer systems, Theor, Found. Chem. Eng., 2008, vol. 42, no. 2, pp. 203–210. https://doi.org/10.1134/S0040579508020139

    Article  CAS  Google Scholar 

  11. Tsirlin, A.M., Ideal heat exchange systems, J. Eng. Phys. Thermophys., 2017, vol. 90, no. 5, pp. 1035–1042.

    Article  Google Scholar 

  12. Kondepudi, D. and Prigogine, I., Modern Thermodunamiks, Chichester:.Wiley, 1999.

    Google Scholar 

  13. Tsirlin, A.M. and Akhremenkov, A.A., Optimal heat transfer during the change of phase state of a refrigerating medium, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 812–818. https://doi.org/10.1134/S0040579518050408

    Article  CAS  Google Scholar 

  14. Heat Exchanger Design Handbook, Schltinder, E.U., Ed., Washington: Hemisphere Publishing, 1983.

    Google Scholar 

  15. Kafarov, V.V., Meshalkin, V.P., and Perov, V.L., Matematicheskie osnovy avtomatizirovannogo proektirovaniya khimicheskikh proizvodstv (Mathematical Foundations of Computer-aided Design of Chemical Plants), Moscow: Khimiya, 1979.

  16. Mironova, V.A., Amel’kin, S.A., and Tsirlin, A.M., Matematicheskie metody termodinamiki pri konechnom vremeni (Mathematical Methods of Thermodynamics at a Finite Time), Moscow: Khimiya, 2000.

  17. Tsirlin, A.M., Metody optimizatsii v neobratimoi termodinamike i mikroekonomike (Methods of Optimization in Irreversible Thermodynamics and Microeconomics), Moscow: Fizmatlit, 2003.

  18. Tsirlin, A.M., Optimal control of irreversible heat and mass transfer, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1991, no. 2, pp. 81–86.

  19. Bosnjakovic, F., Technical Thermodynamics, New York: Holt Rinehart, 1965.

    Google Scholar 

  20. Tsirlin, A.M., Ideal heat exchange systems, J. Eng. Phys. Thermophys., 2017, vol. 90, no. 5, pp. 1035–1042.

    Article  Google Scholar 

  21. Tsirlin, A.M. and Vasil’ev, A.V., Thermodynamic entropy balances in perfect mixing apparatuses, J. Eng. Phys. Thermophys., 2023, vol. 96, no. 2, pp. 534–541. https://doi.org/10.1007/s10891-023-02714-z2023

    Article  CAS  Google Scholar 

  22. Linnhoff, B. and Hindmarsh, E., The pinch design method for heat exchanger networks, Chem. Eng. Sci., 1983, vol. 38, no. 5, pp. 745–763. https://doi.org/10.1016/0009-2509(83)80185-7

    Article  CAS  Google Scholar 

  23. Smith, R., Chemical Process Design and Integration, Chichester: Wiley, 2005.

    Google Scholar 

  24. Kemp, I.C., Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy, Amsterdam: Elsevier, 2007.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-61-46013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tsirlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsirlin, A.M. Physical Feasibility and Synthesis of Heat Exchange Systems According to Thermodynamic Parameters. Theor Found Chem Eng 57, 524–536 (2023). https://doi.org/10.1134/S0040579523040474

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040474

Navigation