Skip to main content

Advertisement

Log in

Microglial Calcium Homeostasis Modulator 2: Novel Anti-neuroinflammation Target for the Treatment of Neurodegenerative Diseases

  • Insight
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in alzheimer’s and Parkinson’s diseases. Science 2020, 370: 66–69.

    Article  CAS  PubMed  Google Scholar 

  2. Schrank S, Barrington N, Stutzmann GE. Calcium-handling defects and neurodegenerative disease. Cold Spring Harb Perspect Biol 2020, 12: a035212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang J, Shen Q, Ma Y, Liu L, Jia W, Chen L. Calcium homeostasis in Parkinson’s disease: From pathology to treatment. Neurosci Bull 2022, 38: 1267–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol 2009, 10: 21–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci Adv 2021, 7: eabe3600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bo X, Xie F, Zhang J, Gu R, Li X, Li S, et al. Deletion of Calhm2 alleviates MPTP-induced Parkinson’s disease pathology by inhibiting EFHD2-STAT3 signaling in microglia. Theranostics 2023, 13: 1809–1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Syrjanen JL, Michalski K, Chou TH, Grant T, Rao S, Simorowski N, et al. Publisher Correction: Structure and assembly of calcium homeostasis modulator proteins. Nat Struct Mol Biol 2020, 27: 305.

    Article  CAS  PubMed  Google Scholar 

  8. Boada M, Antúnez C, López-Arrieta J, Galán JJ, Morón FJ, Hernández I, et al. CALHM1 P86L polymorphism is associated with late-onset Alzheimer’s disease in a recessive model. J Alzheimers Dis 2010, 20: 247–251.

    Article  CAS  PubMed  Google Scholar 

  9. Kashio M, Gao WQ, Ohsaki Y, Kido MA, Taruno A. CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Sci Rep 2019, 9: 2681.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moreno-Ortega AJ, Ruiz-Nuño A, García AG, Cano-Abad MF. Mitochondria sense with different kinetics the calcium entering into HeLa cells through calcium channels CALHM1 and mutated P86L-CALHM1. Biochem Biophys Res Commun 2010, 391: 722–726.

    Article  CAS  PubMed  Google Scholar 

  11. Choi W, Clemente N, Sun W, Du J, Lü W. The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 2019, 576: 163–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jun M, Xiaolong Q, Chaojuan Y, Ruiyuan P, Shukun W, Junbing W, et al. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 2018, 23: 1091.

    Article  CAS  PubMed  Google Scholar 

  13. Shibata N, Kuerban B, Komatsu M, Ohnuma T, Baba H, Arai H. Genetic association between CALHM1, 2, and 3 polymorphisms and Alzheimer’s disease in a Japanese population. J Alzheimers Dis 2010, 20: 417–421.

    Article  CAS  PubMed  Google Scholar 

  14. Liao Y, Wang Y, Tao QQ, Yang C, Wang J, Cheng J, et al. CALHM2 V136G polymorphism reduces astrocytic ATP release and is associated with depressive symptoms and Alzheimer’s disease risk. Alzheimers Dement 2023, 19: 4407–4420.

    Article  CAS  PubMed  Google Scholar 

  15. Peled M, Dragovich MA, Adam K, Strazza M, Tocheva AS, Vega IE, et al. EF hand domain family member D2 is required for T cell cytotoxicity. J Immunol 2018, 201: 2824–2831.

    Article  CAS  PubMed  Google Scholar 

  16. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-mediated IFN-γR2 membrane translocation is required to activate macrophage innate response. Cell 2018, 175: 1336-1351.e17.

    Article  CAS  PubMed  Google Scholar 

  17. Territo PR, Zarrinmayeh H. P2X7 receptors in neurodegeneration: Potential therapeutic applications from basic to clinical approaches. Front Cell Neurosci 2021, 15: 617036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, et al. Neurodegenerative disease and the NLRP3 inflammasome. Front Pharmacol 2021, 12: 643254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong Y, Li X, Cheng J, Hou L. Drug development for alzheimer’s disease: Microglia induced neuroinflammation as a target? Int J Mol Sci 2019, 20: 558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hwang D, Kim S, Choi H, Oh IH, Kim BS, Choi HR, et al. Calcium-channel blockers and dementia risk in older adults - national health insurance service - senior cohort (2002–2013). Circ J 2016, 80: 2336–2342.

    Article  CAS  PubMed  Google Scholar 

  21. Pasternak B, Svanström H, Nielsen NM, Fugger L, Melbye M, Hviid A. Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol 2012, 175: 627–635.

    Article  PubMed  Google Scholar 

  22. Lawlor B, Segurado R, Kennelly S, Olde Rikkert MGM, Howard R, Pasquier F, et al. Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. PLoS Med 2018, 15: e1002660.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalar I, Xu H, Secnik J, Schwertner E, Kramberger MG, Winblad B, et al. Calcium channel blockers, survival and ischaemic stroke in patients with dementia: A Swedish registry study. J Intern Med 2021, 289: 508–522.

    Article  CAS  PubMed  Google Scholar 

  24. Saddala MS, Lennikov A, Mukwaya A, Yang Y, Hill MA, Lagali N, et al. Discovery of novel L-type voltage-gated calcium channel blockers and application for the prevention of inflammation and angiogenesis. J Neuroinflammation 2020, 17: 132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang BR, Chang PC, Yeh WL, Lee CH, Tsai CF, Lin C, et al. Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: Implications for neuroprotection. PLoS One 2014, 9: e91167.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Insight article was supported by the Shandong Provincial Natural Science Foundation (ZR2022QH144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Dong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Tang, L. Microglial Calcium Homeostasis Modulator 2: Novel Anti-neuroinflammation Target for the Treatment of Neurodegenerative Diseases. Neurosci. Bull. 40, 553–556 (2024). https://doi.org/10.1007/s12264-023-01153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01153-3

Navigation