Skip to main content
Log in

Tantalum Selenide Micro-Wafer Terahertz Emitter

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Terahertz waves possess distinct characteristics, including such as transience, coherence, low energy, penetration, and fingerprint spectroscopy, which render them well-suited for a diverse range of applications in security inspection, nondestructive testing, and environmental detection. However, the efficiency of terahertz wave generation remains constrained by the terahertz source. To address this limitation and minimize losses in the generation process, the selection of band-gap-free semi-metallic materials, as terahertz radiation sources, is of utmost importance. We successfully fabricate TaSe2 micro-wafer measuring 1×0.5 μm. By employing optical pumping at a wavelength of 1040 nm and a pulse duration of 150 fs, we achieve a terahertz output of nearly 0.005 μW. This output surpasses the terahertz generation efficiency of GaP crystals by approximately 20% under the same power density. Furthermore, we conduct investigations into the impact of incidence and optical polarization on terahertz wave generation. TaSe2 exhibits suitability for high-efficiency, micro–nano-scale terahertz wave generation applications, such as on-chip terahertz systems and micro–nano terahertz sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Song, Z. Zhou, G. Zhu, et al., Nanophotonics, 11, 3595 (2022).

    Article  Google Scholar 

  2. Q. Song, Y. Zhou, Y. Wang, et al., Adv. Electron. Mater., 9, 2300149 (2023).

    Article  Google Scholar 

  3. M. Zhang, R. Chen, Q. Song, et al., Results Phys., 47, 106342 (2023).

    Article  Google Scholar 

  4. S. Xu, J. Yang, H. Jiang, et al., Nanotechnology, 30, 265706 (2019).

    Article  ADS  Google Scholar 

  5. J. Ji, S. Zhou, J. Zhang, et al., Sci. Rep., 8, 2682 (2018); https://doi.org/10.1038/s41598-018-21095-5

  6. J. Lu, S.-H. Lee, X. Li, et al., Opt. Express, 26, 30786 (2018); https://doi.org/10.1364/OE.26.030786

  7. M.-S. Song, C. Kang, C.-S. Kee, et al., Opt. Express, 26, 25315 (2018); https://doi.org/10.1364/OE.26.025315

  8. K. Si, Y. Huang, Q. Zhao, et al., Appl. Surf. Sci., 448, 416 (2018); https://doi.org/10.1016/j.apsusc.2018.04.117

  9. Z. Lei, Y. Y. Huang, Z. Y. Fan, et al., Appl. Phys. Lett., 116, 4 (2020).

    Google Scholar 

  10. Y. Y. Huang, L. Zhu, Q. Y. Zhao, et al., ACS Appl. Mater. Interfaces, 9, 4956 (2017).

    Article  Google Scholar 

  11. L. H. Zhang, Y. Y. Huang, L. Zhu, et al., Adv. Opt. Mater., 7, 8 (2019).

    Google Scholar 

  12. K. Y. Si, Y. Y. Huang, Q. Y. Zhao, et al., Appl. Surf. Sci., 448, 416 (2018).

    Article  ADS  Google Scholar 

  13. K. Kushnir, M. Wang, Y. Qin, et al., SPIE Proc., 10756, 107560S (2018); https://doi.org/10.1117/12.2322160

  14. J. Maysonnave, S. Huppert, F. Wang, et al., Nano Lett., 14, 5797 (2014).

    Article  ADS  Google Scholar 

  15. H. Wang, Y. X. Zhou, Z. H. Yao, et al., Carbon, 134, 439 (2018).

    Article  Google Scholar 

  16. K. Makino, K. Kato, Y. Saito, et al., Opt. Lett., 44, 1355 (2019).

    Article  ADS  Google Scholar 

  17. S. Y. Hamh, S. H. Park, S. K. Jerng, et al., Appl. Phys. Lett., 108, 5 (2016).

    Article  Google Scholar 

  18. V. Apostolopoulos and M. E. Barnes, J. Phys. D - Appl. Phys., 47, 16 (2014).

    Article  Google Scholar 

  19. G. H. Welsh, N. T. Hunt, and K. Wynne, Phys. Rev. Lett., 98, 4 (2007).

    Article  Google Scholar 

  20. Y. Ge, F. Wang, Y. Yang, et al., Small, 18, 2107027 (2022); https://doi.org/10.1002/smll.202107027

  21. Q. Song, H. Chen, M. Zhang, et al., J. Lumin., 235, 118008 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Wang, J. Tantalum Selenide Micro-Wafer Terahertz Emitter. J Russ Laser Res 44, 540–546 (2023). https://doi.org/10.1007/s10946-023-10161-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10161-7

Keywords

Navigation