Skip to main content
Log in

A Prototype Model of Laser Radar

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We examine and test in the laboratory our laser pulse remote sensing system, based on the number of cycles of a local oscillator. We calculate the range of an object, using a peak transmission power of 2 mW from a Mesa HP-pumped He–Ne laser with a pulse frequency of 3 kHz and a pulse width of 150 ns; also, we establish a correlation between the counted cycle and the laser wavelength. The results of outer range measurements with a range resolution of 45 m at a distance of 60 meters are presented. Here, photons are used for tracking and object identification, which being encoded using encoding technology, will be challenging to duplicate, and our optical radar will not be misplaced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arbel, L. Hirschbrand, S. Weiss, et al., IEEE Photonics J., 8, 6801211 (2016); https://doi.org/10.1109/JPHOT.2016.2528118

  2. A. Livshitz and I. Moshe, IEEE Trans. Aerosp. Electron. Syst., 56, 1318 (2020); https://doi.org/10.1109/TAES.2019.2933955

  3. K. Ioannou, A. Kokos, H. Solomos, and G. Douvropoulos, “Quantum Radars: Fundamental physical framework and practical aspects of an emerging defence technology,” in The 6th international Conference on Experiments/Process/System Modeling/Simulation/Optimization,” Athens, 8–11 July, 2015.

  4. J. Trevithick, The Drive, Nov. 6, (2018).

  5. S. Barzanjeh, S. Guha, C. Weedbrook, et al., Phys. Rev. Lett., 114, 080503 (2015); https://doi.org/10.1103/PhysRevLett.114.080503

  6. M. Nie, Q. Liu, E. Ji, and M. Gong, Appl. Opt., 54, 8383 (2015); https://doi.org/10.1364/AO.54.008383

  7. M. Lanzagorta and J. Uhlmann, “Quantum imaging in the maritime environment,” in Proceedings of OCEANS 2017-Anchorage, IEEE, Anchorage, AK (2017), pp. 1–10.

  8. M. I. Arzuov, M. E. Karasev, V. I. Konov, et al., Sov. J. Quantum Electron., 8, 892 (1978); https://doi.org/10.1070/QE1978v008n07ABEH010465

  9. B. Balasko, S. Nemeth, A. Janecska, et al., Comput. Aided Chem. Eng., 24, 895 (2007);

    Google Scholar 

  10. 1016/S1570-7946(07)80172-6

  11. 10. S. Barzanjeh, S. Guha, C. Weedbrook, et al., Phys. Rev. Lett., 114, 080503 (2015).

    Article  ADS  Google Scholar 

  12. W. Zhao, L. Xiao, X. He, et al., Opt. Laser Technol., 141, 107115 (2021); https://doi.org/10.1016/j.optlastec.2021.107115

  13. K. S. Suh, J. Y. Sung, H. J. Roh,et al., J. Dermatolog. Treat., 22, (2011); https://doi.org/10.3109/09546631003686051

  14. L. W. Chan, D. E. Morse, and M. J. Gordon, Bioinspir. Biomim., 13, 041001 (2018); https://doi.org/10.1088/1748-3190/aab738

  15. S. A. Boden and D. M. Bagnall, “Moth-Eye Antireflective Structures,” in: B. Bhushan (Ed.) Encyclopedia of Nanotechnology, Springer, Dordrecht (2012); https://doi.org/10.1007/978-90-481-9751-4 262

  16. K. A. Forbes, J. S. Ford, and D. L. Andrews, Phys. Rev. Lett., 118, 133602 (2017); https://doi.org/10.1103/PhysRevLett.118.133602

  17. M. J. Brandsema, “Formulation and Analysis of the Quantum Radar Cross Section,” Ph.D. Thesis, The Pennsylvania State University, (2017).

  18. 17. A. Salmanogli, G. Dincer, and G. Selcuk, IEEE J. Sel. Top. Quantum Electron., 26, 55 (2020).

    Google Scholar 

  19. W. Dong and I. Volkan, IEEE Sens. J., 18, 4200 (2018); https://doi.org/10.1109/JSEN.2018.2819082

  20. C. Chang, A. Sandbo, M. Vadiraj, et al., Appl. Phys. Lett., 114, 112601 (2019); https://doi.org/10.1063/1.5085002

  21. K. Durak, J. Naser, and D. Cağri, Proc. SPIE, 11167, 111670N (2019); https://doi.org/10.1117/12.2550479

  22. M. S. Brown and C. B. Arnold, “Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification,” In: Sugioka, K., Meunier, M., Piqu´e, A. (Eds.) Laser Precision Microfabrication. Springer Series in Materials Science, 135, Springer, Berlin/Heidelberg (2010), p. 91; https://doi.org/10.1007/978-3-642-10523-4 4

  23. 22. X. Zhao, N. Wang, and R. Guo, Acta Phys. Sin., 64, 15 (2015).

    Google Scholar 

  24. 23. M. Dekan, F. Duchon, A. Babinec, et al., Int. J. Adv. Rob. Syst., 15, 1729881417748132 (2018).

    Google Scholar 

  25. Y. Nakamori, H. Yutaka, and I. Akinori, et al., Robomech. J., 5, 25 (2018); https://doi.org/10.1186/s40648-018-0122-x

  26. Y. Fu, R. Liu, H. Zhang, et al., Int. J. Distrib. Sens. Netw., 15, 1550147719860990 (2019); https://doi.org/10.1177/1550147719860990

  27. M. Krelina, “Quantum Warfare: Definitions, Overview and Challenges,” arXiv:2103.12548 [quant-ph] (2021).

  28. J. Fan, Y. Huang, J. Shan, et al., Sensors, 19, 2030 (2019); https://doi.org/10.3390/s19092030

  29. S. T. Kochuveedu, Y. H. Janga, and D. H. Kim, Chem. Soc. Rev., 42, 8467 (2013); https://doi.org/10.1039/c3cs60043b

  30. M. J. Brandsema, M. Lanzagorta, and R. M. Narayanan, IEEE Aerosp. Electron. Syst. Mag., 35, 58 (2020); https://doi.org/10.1109/MAES.2020.2970264

  31. T. Sakka, H. Oguchi, S. Masai, et al., Appl. Phys. Lett., 88, 16 (2006); https://doi.org/10.1063/1.2172235

  32. J. H. Shapiro, IEEE Aerosp. Electron. Syst. Mag., 35, 8 (2020); https://doi.org/10.1109/MAES.2019.2957870

  33. H. Liu, D. Giovannini, H. He, et al., Optica, 6, 1349 (2019); https://doi.org/10.1364/OPTICA.6.001349

  34. L. Ding, L. Ma, L. Li, et al., Remote Sens., 13, 1818 (2021); https://doi.org/10.3390/rs13091818

  35. L. Wan, Y. Lin, H. Zhang, et al., Remote Sens., 12, 656 (2020); https://doi.org/10.3390/rs12040656

  36. B. Balaji, “Quantum Radar: Snake Oil or Good Idea?” in 2018 International Carnahan Conference on Security Technology (ICCST), Montreal, QC, Canada (2018), pp. 1–7; https://doi.org/10.1109/CCST.2018.8585474

  37. S. Pirandola, B. R. Bardhan, T. Gehring, et al., Nat. Photonics, 12, 724 (2018); https://doi.org/10.1038/s41566-018-0301-6

  38. Q. Wang, Y. Zhang, X. Yang. et al., “Super-resolving quantum LADAR with even coherent states sources at shot noise limit,” in 2015 International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China (2015), pp. 19–22; https://doi.org/10.1109/ICoOM.2015.7398760

  39. K. John, C. Ram´on, M. Emilio, et al., Phys. Rev. Lett., 98, 16 (2007).

  40. Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. Lett., 118, 040801 (2017); https://doi.org/10.1103/PhysRevLett.118.040801

  41. 40. Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A, 96, 040304(R) (2017); https://doi.org/10.1103/PhysRevA.96.040304

    Article  ADS  Google Scholar 

  42. M. Genovese, J. Opt., 18, 073002 (2016); https://doi.org/10.1088/2040-8978/18/7/073002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Somay, S. A Prototype Model of Laser Radar. J Russ Laser Res 44, 523–533 (2023). https://doi.org/10.1007/s10946-023-10159-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10159-1

Keywords

Navigation