Skip to main content
Log in

One-pot and One-step Cu(0)-mediated Reversible-Deactivation Radical Polymerization of N-Isopropylacrylamide (NIPAM) in Water

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Copper(0)-mediated reversible-deactivation radical polymerization (Cu(0)-mediated RDRP) of the water-soluble monomer N-isopropylacrylamide (NIPAM) has been challenging with the problems of high dispersity, poor control over the molecular weights (MWs) or complex or multi reaction steps, etc. In this work, we report the well-controlled polymerization of NIPAM in water via a facile one-pot and one-step Cu(0)-mediated RDRP. The results of this approach show that the key for kicking off the Cu(0)-mediated NIPAM RDRPs is to ensure sufficient CuI at the very beginning, and the key to achieve a well-controlled chain growth is to provide adequate deactivation strength during the polymerization process. For NIPAM, which has a high propagation rate constant, the deactivation control can be effectively enhanced by extra adding deactivator (i.e., CuII) to the system. Moreover, a low reaction temperature (4 °C) is necessary in the controlled synthesis of higher MW poly(N-isopropylacrylamide) (PNIPAM) to avoid the compromise in control caused by the phase transition from its lower critical solution temperature (LCST). Through this new kinetically controlled strategy, PNIPAMs with well-defined structure, narrow molecular weight distributions (MWDs) and varied MWs were successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311.

    Article  CAS  Google Scholar 

  2. Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661–3688.

    Article  PubMed  CAS  Google Scholar 

  3. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559–5562.

    Article  CAS  Google Scholar 

  4. Moad, G.; Rizzardo, E.; Thang, S. H. Living radical polymerization by the raft process a third update. Aust. J. Chem. 2012, 65, 985–1076.

    Article  CAS  Google Scholar 

  5. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenhlpphsneine)rethunium(ll)/ methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995, 28, 1721–1723.

    Article  CAS  Google Scholar 

  6. Wang, J. S.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of Pi-Cl. J. Am. Chem. Soc. 1995, 117, 5614–5615.

    Article  CAS  Google Scholar 

  7. Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev. 2018, 47, 5457–5490.

    Article  PubMed  CAS  Google Scholar 

  8. Dworakowska, S.; Lorandi, F.; Gorczyński, A.; Matyjaszewski, K. Toward green atom transfer radical polymerization: current status and future challenges. Adv. Sci. 2022, 9, 2106076.

    Article  CAS  Google Scholar 

  9. Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. Zerovalent metals in controlled/“living” radical polymerization. Macromolecules 1997, 30, 7348–7350.

    Article  CAS  Google Scholar 

  10. Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C J. Am. Chem. Soc. 2006, 128, 14156–14165.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, W.; Zhao, J.; Zhou, N.; Zhu, J.; Zhang, W.; Pan, X.; Zhang, Z.; Zhu, X. Reversible deactivation radical polymerization in the presence of zero-valent metals: from components to precise polymerization. Polym. Chem. 2014, 5, 3533–3546.

    Article  CAS  Google Scholar 

  12. Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N. M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem. Rev. 2016, 116, 1803–1949.

    Article  PubMed  CAS  Google Scholar 

  13. Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem. Rev. 2016, 116, 835–877.

    Article  PubMed  CAS  Google Scholar 

  14. Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.; Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J. A. Role of Cu 0 in controlled/“living” radical polymerization. Macromolecules 2007, 40, 7795–7806.

    Article  CAS  Google Scholar 

  15. Gao, Y.; Zhao, T.; Wang, W. Is it ATRP or SET-LRP? Part I: Cu0&Cull/PMDETA-mediated reversible-deactivation radical polymerization. RSC Adv. 2014, 4, 61687–61690.

    Article  CAS  Google Scholar 

  16. Gao, Y.; Zhao, T.; Zhou, D.; Greiser, U.; Wang, W. Insights into relevant mechanistic aspects about the induction period of Cu0/Me6TREN-mediated reversible-deactivation radical polymerization. Chem. Commun. 2015, 51, 14435–14438.

    Article  CAS  Google Scholar 

  17. Miao, Y. P.; Lyu, J.; Yong, H. Y.; Sigen, A.; Gao, Y. S.; Wang, W. X. Controlled polymerization of methyl methacrylate and styrene via Cu(0)-mediated RDRP by selecting the optimal reaction conditions. Chinese J. Polym. Sci. 2019, 37, 591–597.

    Article  CAS  Google Scholar 

  18. Jones, G. R.; Whitfield, R.; Anastasaki, A.; Risangud, N.; Simula, A.; Keddie, D. J.; Haddleton, D. M. Cu(0)-RDRP of methacrylates in DMSO: importance of the initiator. Polym. Chem. 2018, 9, 2382–2388.

    Article  CAS  Google Scholar 

  19. Whitfield, R.; Anastasaki, A.; Jones, G. R.; Haddleton, D. M. Cu(0)-RDRP of styrene: balancing initiator efficiency and dispersity. Polym. Chem. 2018, 9, 4395–4403.

    Article  CAS  Google Scholar 

  20. Nguyen, N. H.; Rosen, B. M.; Percec, V. SET-LRP of N,N-dimethylacrylamide and of n-isopropylacrylamide at 25 °C in protic and in dipolar aprotic solvents. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 1752–1763.

    Article  CAS  Google Scholar 

  21. Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D. M. Aqueous copper-mediated living polymerization: exploiting rapid disproportionation of CuBr with Me6TREN. J. Am. Chem. Soc. 2013, 135, 7355–7363.

    Article  PubMed  CAS  Google Scholar 

  22. Ganachaud, F.; Balic, R.; Monteiro, M. J.; Gilbert, R. G. Propagation rate coefficient of poly(N-isopropylacrylamide) in water below its lower critical solution temperature. Macromolecules 2000, 33, 8589–8596.

    Article  CAS  Google Scholar 

  23. Van Herk, A. M. Pulsed initiation polymerization as a means of obtaining propagation rate coefficients in free-radical polymerizations. II. Review up to 2000. Macromol. Theory Simulations 2000, 9, 433–441.

    Article  CAS  Google Scholar 

  24. Braunecker, W. A.; Tsarevsky, N. V.; Gennaro, A.; Matyjaszewski, K. Thermodynamic components of the atom transfer radical polymerization equilibrium: quantifying solvent effects. Macromolecules 2009, 42, 6348–6360.

    Article  CAS  Google Scholar 

  25. Paik, H.; Horwitz, C. P. Tridentate nitrogen-based ligands in Cu-based ATRP: a structure-activity study. Macromolecules 2001, 34, 430–440.

    Article  Google Scholar 

  26. Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012, 45, 4015–4039.

    Article  CAS  Google Scholar 

  27. Zebende, G. F.; da Silva Filho, A. M. Detrended multiple cross-correlation coefficient. Phys. A Stat. Mech. Appl. 2018, 510, 91–97.

    Article  Google Scholar 

  28. Schild, H. G. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249.

    Article  CAS  Google Scholar 

  29. Halperin, A.; Kröger, M.; Winnik, F. M. Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew. Chem. Int. Ed. 2015, 54, 15342–15367.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science Foundation Ireland (SFI) Frontiers for the Future 2019 call (No. 19/FFP/6522), the National Natural Science Foundation of China (NSFC) (No. 51873179) and Irish Research Council (IRC) Government of Ireland Postdoctoral Fellowship (No. GOIPD/2022/209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Lyu or Wen-Xin Wang.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

10118_2024_3065_MOESM1_ESM.pdf

One-pot and One-step Cu(0)-mediated Reversible-Deactivation Radical Polymerization of N-Isopropylacrylamide (NIPAM) in Water

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZS., Lyu, J., Qiu, B. et al. One-pot and One-step Cu(0)-mediated Reversible-Deactivation Radical Polymerization of N-Isopropylacrylamide (NIPAM) in Water. Chin J Polym Sci 42, 1–6 (2024). https://doi.org/10.1007/s10118-024-3065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3065-0

Keywords

Navigation