Skip to main content
Log in

Inhibitory impact of MgO nanoparticles on oxidative stress and other physiological attributes of spinach plant grown under field condition

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Green synthesis of NPs is preferred due to its eco-friendly procedures and non-toxic end products. However, unintentional release of NPs can lead to environmental pollution affecting living organisms including plants. NPs accumulation in soil can affect the agricultural sustainability and crop production. In this context, we report the morphological and biochemical response of spinach nanoprimed with MgO–NPs at concentrations, 10, 50, 100, and 150 µg/ml. Nanopriming reduced the spinach root length by 14–26%, as a result a reduction of 20–74% in the length of spinach shoots was observed. The decreased spinach shoot length inhibited the chlorophyll accumulation by 21–55%, thus reducing the accumulation of carbohydrates and yield by 46 and 49%, respectively. The reduced utilization of the total absorbed light further enhanced ROS generation and oxidative stress by 32%, thus significantly altering their antioxidant system. Additionally, a significant variation in the accumulation of flavonoid pathway downstream metabolites myricitin, rutin, kaempferol-3 glycoside, and quercitin was also revealed on MgO-NPs nanopriming. Additionally, NPs enhanced the protein levels of spinach probably as an osmoprotectant to regulate the oxidative stress. However, increased protein precipitable tannins and enhanced oxidative stress reduced the protein digestibility and solubility. Overall, MgO-NPs mediated oxidative stress negatively affected the growth, development, and yield of spinach in fields in a concentration dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abebe TG, Tamtam MR, Abebe AA, Abtemariam KA, Shigut TG, Dejen YA, Haile EG (2022) Growing use and impacts of chemical fertilizers and assessing alternative organic fertilizer sources in Ethiopia. Appl Environ Soil Sci 2022:1–14

    Article  Google Scholar 

  • Ahmed B, Rizvi A, Ali K, Lee J, Zaidi A, Khan MS, Musarrat J (2021) Nanoparticles in the soil–plant system: a review. Environ Chem Lett 19:1545–1609

    Article  CAS  Google Scholar 

  • AlQuraidi AO, Mosa KA, Ramamoorthy K (2019) Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum—Apiaceae). Plants 8:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand KV, Anugraga AR, Kannan M, Singaravelu G, Govindaraju K (2020) Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Mater Lett 271:127792.

  • Azeem M, Pirjan K, Qasim M, Mahmood A, Javed T, Muhammad H, Rahimi M (2023) Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci Rep 13:1–17

    Article  Google Scholar 

  • Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK, Das A, Yadav V, Yadav B, Shekhawat K (2022) Nanofertilizers for agricultural and environmental sustainability. Chemosphere 292:133451

    Article  CAS  PubMed  Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum 7:679

    Google Scholar 

  • Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27.

  • Bera MB, Mukherjee RK (1989) Solubility, emulsifying, and foaming properties of rice bran protein concentrates. J Food Sci 54:142–145

    Article  CAS  Google Scholar 

  • Buckley S, Ahmed S, Griffin T, Orians C (2020) Extreme precipitation enhances phenolic concentrations of spinach (Spinacia oleracea). J Crop Improv 34:618–636

    Article  Google Scholar 

  • Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, Verhé R, Van Camp J (2008) Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem 108:649–656

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018a) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai L, Liu M, Liu Z, Yang H, Sun X, Chen J, Ding W (2018b) MgO NPs can boost plant growth: Evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules 23:3375. https://doi.org/10.3390/molecules23123375

  • Çekiç FÖ, Ekinci S, İnal MS, Özakça D (2017) Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turk J Biol 41:700–707. https://doi.org/10.3906/biy-1608-36s

    Article  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10.

  • Cole JC, Smith MW, Penn CJ, Cheary BS, Conaghan KJ (2016) Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci Hortic 211:420–430

    Article  CAS  Google Scholar 

  • Dimkpa CO, Singh U, Adisa IO, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2018) Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy 8:158. https://doi.org/10.3390/agronomy8090158

  • Dong C, Jiao C, Xie C, Liu Y, Luo W, Fan S, Ma Y, He X, Lin A, Zhang Z (2021) Effects of ceria nanoparticles and CeCl3 on growth, physiological and biochemical parameters of corn (Zea mays) plants grown in soil. NanoImpact 22:100311. https://doi.org/10.1016/j.impact.2021.100311

    Article  CAS  PubMed  Google Scholar 

  • Elkhalil EAJ, El Tinay AH, Mohamed BE, Elshseikh EAE (2001) Effect of malt pretreatment on phytic acid and in vitro protein digestibility of sorghum flour. Food Chem 72:29–32. https://doi.org/10.1016/S0308-8146(00)00195-3

    Article  CAS  Google Scholar 

  • Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M (2016) Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plant 38:145. https://doi.org/10.1007/s11738-016-2165-z

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59:315–318. https://doi.org/10.1104/pp.59.2.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protocols Food Anal Chem. https://doi.org/10.1002/0471142913.faf0102s00

  • Gladkova MM, Terekhova VA (2013) Engineered nanomaterials in soil: sources of entry and migration pathways. Moscow Univ Soil Sci Bull 68:129–134

    Article  Google Scholar 

  • González M, Jia Y, Sunahara GI, Whalen JK (2020) Barley (Hordeum vulgare) seedling growth declines with increasing exposure to silver nanoparticles in biosolid-amended soils. Can J Soil Sci 100:189–197. https://doi.org/10.1139/cjss-2019-0135

    Article  CAS  Google Scholar 

  • Guleria P, Masand S, Yadav SK (2014) Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway. Gene 539:250–257. https://doi.org/10.1016/j.gene.2014.01.071

    Article  CAS  PubMed  Google Scholar 

  • Hanif R, Iqbal Z, Iqbal M, Hanif S, Rasheed M (2006) Use of vegetables as nutritional food: role in human health. J Agric Biol Sci 1:18–22

    Google Scholar 

  • Hashimoto H, Uragami, C, Cogdell RJ (2016) Carotenoids and Photosynthesis. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, Vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_4

  • Hauer-Jákli M, Tränkner M (2019) Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: a systematic review and meta-analysis from 70 years of research. Front Plant Sci 10:766. https://doi.org/10.3389/fpls.2019.00766

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  • Howard LR, Pandjaitan N, Morelock T, Gil MI (2002) Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J Agric Food Chem 50:5891–5896

    Article  CAS  PubMed  Google Scholar 

  • Ijaz M, Zafar M, Afsheen S, Iqbal TA (2020) A review on Ag-nanostructures for enhancement in shelf time of fruits. J Inorg Organomet Polym Mater 30:1475–1482

    Article  CAS  Google Scholar 

  • Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S (2020) Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Not Bot Horti Agrobot Cluj Napoca 48. https://doi.org/10.15835/nbha48311766

  • Jhansi K, Jayarambabu N, Reddy KP, Reddy NM, Suvarna RP, Rao KV, Rajendar V (2017) Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. 3Biotech 7:263. https://doi.org/10.1007/s13205-017-0894-3

  • Jurkow R, Sękara A, Pokluda R, Smoleń S, Kalisz A (2020) Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal(oid) oxide nanoparticles. Agronomy 10:997. https://doi.org/10.3390/agronomy10070997

    Article  CAS  Google Scholar 

  • Kadigi IL, Richardson JW, Mutabazi KD, Philip D, Mourice SK, Mbungu W, Bizimana JC, Sieber S (2020) The effect of nitrogen-fertilizer and optimal plant population on the profitability of maize plots in the Wami River sub-basin, Tanzania: a bio-economic simulation approach. Agricultural Syst, 185.

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Awan SA, Raza MA, Rizwan M, Tariq R, Ali S, Huang L (2021) Silver nanoparticles improved the plant growth and reduced the sodium and chlorine accumulation in pearl millet: a life cycle study. Environ Sci Pollut Res 28:13712–13724

    Article  CAS  Google Scholar 

  • Kihara J, Nziguheba G, Zingore S, Coulibaly A, Esilaba A, Kabambe V, Njoroge S, Palm C, Huising J (2016) Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa. Agr Ecosyst Environ 229:1–12

    Article  CAS  Google Scholar 

  • Kramer SB, Reganold JP, Glover JD, Bohannan BJ, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci USA 103:4522–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  Google Scholar 

  • Kumar V, Guleria P, Ranjan S (2021) Phytoresponse to nanoparticles exposure. In: Kumar V, Guleria P, Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanotoxicology and nanoecotoxicology. Springer Nature, Switzerland AG. https://doi.org/10.1007/978-3-030-63241-0

  • Kumar V, Jain A, Wadhawan S, Mehta SK (2018) Synthesis of biosurfactant-coated magnesium oxide nanoparticles for methylene blue removal and selective Pb2+ sensing. IET Nanobiotechnol 12:241–253. https://doi.org/10.1049/iet-nbt.2017.0118

    Article  PubMed Central  Google Scholar 

  • Lala S (2021) Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: a review. IET Nanobiotechnol 15:28–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778. https://doi.org/10.1007/s00128-017-2205-4

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279. https://doi.org/10.1016/j.chemosphere.2009.10.050

    Article  CAS  PubMed  Google Scholar 

  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In: Dubey SK, Pandey A, Sangwan RS (eds) Current Developments in Biotechnology and Bioengineering. Elsevier, pp 23‒46. https://doi.org/10.1016/B978-0-444-63661-4.00002-5

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelock TE, Correll JC (2008) Spinach. In: Prohens J, Nuez F (eds) Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Springer, New York. https://doi.org/10.1007/978-0-387-30443-4_6

  • Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958. https://doi.org/10.1007/s11738-014-1667-9

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidise in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nguyen D, Nguyen HM, Le NT, Nguyen KH, Nguyen HT, Le HM, Nguyen AT, Dinh NTT, Hoang SA, Van Ha C (2022) Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J Plant Growth Regul 41:364–375

    Article  Google Scholar 

  • Nguyen HC, Nguyen TT, Dao TH, Ngo QB, Pham HL, Nguyen TBN (2016) Preparation of Ag/SiO2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26). Adv Nat Sci: Nanosci 7:045014. https://doi.org/10.1088/2043-6262/7/4/045014

    Article  CAS  Google Scholar 

  • Nikolova M, Slavchov R, Nikolova G (2020) Nanotechnology in medicine. In: Hock F, Gralinski M (eds) Drug discovery and evaluation: methods in clinical pharmacology. Springer, Cham, pp 533–546. https://doi.org/10.1007/978-3-319-68864-0_45.

  • Nishihara E, Inoue M, Kondo K, Takahashi K, Nakata N (2001) Spinach yield and nutritional quality affected by controlled soil water matric head. Agric Water Manag 51:217–229

    Article  Google Scholar 

  • Ors S, Suarez DL (2017) Spinach biomass yield and physiological response to interactive salinity and water stress. Agric Water Manag 190:31–41

    Article  Google Scholar 

  • Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN (2021) Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, 2:1‒20. Springer, Cham.

  • Plaksenkova I, Kokina I, Petrova A, Jermaļonoka M, Gerbreders V, Krasovska M (2020) The impact of zinc oxide nanoparticles on cytotoxicity, genotoxicity, and miRNA expression in barley (Hordeum vulgare L.) seedlings. Sci World J 2020:6649746

    Article  Google Scholar 

  • Praburaj L, Design F, Nadu T (2018) Role of agriculture in the economic development of a country. Shanlax Int J Comm 6:1–5

    Google Scholar 

  • Raigond P, Raigond B, Kaundal B, Singh B, Joshi A, Dutt S (2017) Effect of zinc nanoparticles on antioxidative system of potato plants. J Environ Biol 38:435. https://doi.org/10.22438/jeb/38/3/MS-209.

  • Rajput V, Minkina T, Mazarji M, Shende S, Sushkova S, Mandzhieva S, Burachevskaya M, Chaplygin V, Singh A, Jatav H (2020) Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Annal Agric Sci 65:137–143

    Article  Google Scholar 

  • Rajput VD, Minkina T, Sushkova S, Chokheli V, Soldatov M (2019) Toxicity assessment of metal oxide nanoparticles on terrestrial plants. In: Comprehensive analytical chemistry, vol. 87, pp. 189–207, Elsevier, Amsterdam.

  • Rani P, Kaur G, Rao KV, Singh J, Rawat M (2020) Impact of green synthesized metal oxide nanoparticles on seed germination and seedling growth of Vigna radiata (Mung Bean) and Cajanus cajan (Red Gram). J Inorg Organomet Polym Mater 30:4053–4062. https://doi.org/10.1007/s10904-020-01551-4

    Article  CAS  Google Scholar 

  • Rathore I, Tarafdar JC (2015) Perspectives of biosynthesized magnesium nanoparticles in foliar application of wheat plant. J Bionanosci 9:209–214

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, ur Rehman MZ, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  PubMed  Google Scholar 

  • Roberts JL, Moreau R (2016) Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct 2016:7. https://doi.org/10.1039/c6fo00051g

  • Sadak MS (2019) Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Natl Res Cent 43:1–6

    Article  Google Scholar 

  • Salama HM (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197

    Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:2

    Google Scholar 

  • Seo JH, Kim JE, Shim JH, Yoon G, Bang MA, Bae CS, Lee KJ, Park DH, Cho SS (2016) HPLC analysis, optimization of extraction conditions and biological evaluation of Corylopsis coreana Uyeki Flos. Molecules 21:94. https://doi.org/10.3390/molecules21010094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Gautam A, Kumar V, Guleria P (2021a) In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. Environ Sci Pollut Res 29:13635–13645. https://doi.org/10.1007/s11356-021-16828-5

    Article  CAS  Google Scholar 

  • Sharma P, Gautam A, Kumar V, Guleria P (2021b) In vitro exposure of magnesium oxide nanoparticles negatively regulate the growth of Vigna radiata. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03738-9

    Article  Google Scholar 

  • Sharma P, Gautam A, Kumar V, Guleria P (2021c) In vitro exposure of magnesium oxide nanoparticles adversely affects the vegetative growth and biochemical parameters of black gram. Environ Nanotechnol Monit Manag 16:100483

    CAS  Google Scholar 

  • Sharma P, Gautam A, Kumar V, Guleria P (2022) MgO nanoparticles mediated seed priming inhibits the growth of lentil (Lens culinaris). Vegetos, pp 1–14. https://doi.org/10.1007/s42535-022-00400-8

  • Sharma, P, Kumar V, Khosla R, Guleria P 2020. Exogenous naringenin improved digestible protein accumulation and altered morphology via VrPIN and auxin redistribution in Vigna radiata. 3 Biotech 10:1–14. https://doi.org/10.1007/s13205-020-02428-6

  • Shekhawat GS, Mahawar L, Rajput P, Rajput VD, Minkina T, Singh RK (2021) Role of engineered carbon nanoparticles (CNPs) in promoting growth and metabolism of Vigna radiata (L.) Wilczek: insights into the biochemical and physiological responses. Plants 10:1317. https://doi.org/10.3390/plants10071317

  • Shimizu N, Kobayashi K, Hayashi K (1984) The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical. J Biol Chem 259:4414–4418. https://doi.org/10.3390/molecules21010094

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H (2017) Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol 262:11–27. https://doi.org/10.1016/j.jbiotec.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Kumar A (2018) Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicol 27:23–31. https://doi.org/10.1007/s10646-017-1867-3

    Article  CAS  Google Scholar 

  • Soraki RK, Gerami M, Ramezani M (2021) Effect of graphene/metal nanocomposites on the key genes involved in rosmarinic acid biosynthesis pathway and its accumulation in Melissa officinalis. BMC Plant Biol 21:1–14. https://doi.org/10.1186/s12870-021-03052-z

    Article  CAS  Google Scholar 

  • Souza LRR, Bernardes LE, Barbetta MFS, da Veiga MAMS (2019) Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio. Environ Sci Pollut Res 26:24121–24131. https://doi.org/10.1007/s11356-019-05713-x

    Article  CAS  Google Scholar 

  • Sun F, Yan Y, Lin L (2018) The evaluation of antioxidant properties and stability of polyphenols from Spinacia oleracea. J Biotech Res 9:8–13

    Google Scholar 

  • Surendar KK, Durga Devi D, Ravi I, Jeyakumar P, Velayudham K (2013) Water stress affects plant relative water content, soluble protein, total chlorophyll content and yield of ratoon banana. Int J Hortic, 3.

  • Tolaymat T, Genaidy A, Abdelraheem W, Dionysiou D, Andersen C (2017) The effects of metallic engineered nanoparticles upon plant systems: an analytic examination of scientific evidence. Sci Total Environ 579:93–106

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Korkmaz AD, Baykal A, Almessiere M, Ercan I (2019) Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): a comparative study. Plant Physiol Biochem 139:56–65. https://doi.org/10.1016/j.plaphy.2019.03.011

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu H, Tombuloglu G, Slimani Y, Ercan I, Sozeri H, Baykal A (2018) Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ Pollut 243:872–881

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501. https://doi.org/10.3389/fpls.2017.01501

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Ren Y, He J, Zhang L, Wang X, Cui Z (2020) Impact of copper oxide nanoparticles on the germination, seedling growth, and physiological responses in Brassica pekinensis L. Environ Sci Pollut Res 27:31505–31515

    Article  CAS  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu C, Leskovar DI (2015) Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci Hortic 183:39–47

    Article  Google Scholar 

  • Xu C, Mou B (2016) Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. J Am Soc Hortic Sci 141:12–21

    Article  CAS  Google Scholar 

  • Yang Z, Xiao Y, Jiao T, Zhang Y, Chen J, Gao Y (2020) Effects of copper oxide nanoparticles on the growth of rice (Oryza Sativa L.) seedlings and the relevant physiological responses. Int J Environ Res Public Health 17:1260.

  • Yavuz D, Kılıç E, Seymen M, Dal Y, Kayak N, Kal Ü, Yavuz N (2022) The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Sci Hortic 304:111272

    Article  CAS  Google Scholar 

  • Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS (2018) Vermicompost supplementation improves the stability of bioactive anthocyanin and phenolic compounds in Clinacanthus nutans Lindau. Molecules 23:1345

    Article  PubMed  PubMed Central  Google Scholar 

  • Zafar H, Abbasi BH, Zia M (2019) Physiological and antioxidative response of Brassica nigra (L.) to ZnO nanoparticles grown in culture media and soil. Toxicol Environ Chem 101:281–299. https://doi.org/10.1080/02772248.2019.1691555

    Article  CAS  Google Scholar 

  • Ze Y, Yin S, Ji Z, Luo L, Liu C, Hong F (2009) Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts. Biometals 22:941–949. https://doi.org/10.1007/s10534-009-9246-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697. https://doi.org/10.1016/j.envpol.2018.04.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AG, PS, and PG are thankful to DAVU management for continuous encouragement and support to carry out research. VK would like to thank LPU management for encouragement to carry out research. SA and JSY would like to thank Universiti Malaya for continuous encouragement and support to carry out research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vineet Kumar or Praveen Guleria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, A., Sharma, P., Ashokhan, S. et al. Inhibitory impact of MgO nanoparticles on oxidative stress and other physiological attributes of spinach plant grown under field condition. Physiol Mol Biol Plants 29, 1897–1913 (2023). https://doi.org/10.1007/s12298-023-01391-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01391-9

Keywords

Navigation