Skip to main content
Log in

Characteristics and Stability of Pulsed Gas–Liquid Discharge with the Addition of Photocatalysts

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Gas–liquid discharge coupling with photocatalysts is an effective approach to enhance the chemical activity of plasma treated liquid. However, the incomplete understanding of the discharge characteristics with the addition of photocatalysts remain. The characteristics of pulsed gas–liquid discharge combining TiO2 or WO3 are studied in this work to address this issue. Results indicate that the addition of photocatalysts significantly promote the discharge, as evidenced by the diagnosis of discharge current, optical emission spectra, concentrations of aqueous species and solution properties. Specifically, the addition of catalysts enhances the discharge current and enrich the emission spectrum. The atomic emission lines O (3p–3s), N (3p–3s) and Hα were also observed with the addition of TiO2, followed by higher content of reactive species in the solution. However, the addition of catalysts makes the discharge more unstable. This study contributes to an improved understanding of the mechanism of gas–liquid discharge coupled with photocatalysts for the improvement in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated during this study are included in this published article.

References

  1. Magureanu M et al (2021) A review on non-thermal plasma treatment of water contaminated with antibiotics. J Hazard Mater 417:125481. https://doi.org/10.1016/j.jhazmat.2021.125481

    Article  CAS  PubMed  Google Scholar 

  2. Shao T et al (2018) Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications. High Volt 3:14. https://doi.org/10.1049/hve.2016.0014

    Article  Google Scholar 

  3. Chong MN et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res. https://doi.org/10.1016/j.watres.2010.02.039

    Article  PubMed  Google Scholar 

  4. Cao Y et al (2018) Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer. Plasma Sci Technol 20:103001. https://doi.org/10.1088/2058-6272/aacff4

    Article  CAS  Google Scholar 

  5. Ranieri P et al (2020) Plasma agriculture: review from the perspective of the plant and its ecosystem. Plasma Process Polym 18:2000162. https://doi.org/10.1002/ppap.202000162

    Article  CAS  Google Scholar 

  6. Zhou R et al (2020) Plasma-activated water: generation, origin of reactive species and biological applications. J Phys D 53:303001. https://doi.org/10.1088/1361-6463/ab81cf

    Article  CAS  Google Scholar 

  7. Mei D et al (2023) Plasma-enabled catalytic dry reforming of CH4 into syngas, hydrocarbons and oxygenates: insight into the active metals of γ-Al2O3 supported catalysts. J CO2 Util 67:102307. https://doi.org/10.1016/j.jcou.2022.102307

    Article  CAS  Google Scholar 

  8. Shang K et al (2019) Hybrid electric discharge plasma technologies for water decontamination: a short review. Plasma Sci Technol 21:043001. https://doi.org/10.1088/2058-6272/aafbc6

    Article  CAS  Google Scholar 

  9. Wang S et al (2022) Highly synergistic effect for tetracycline degradation by coupling a transient spark gas–liquid discharge with TiO2 photocatalysis. Chem Eng J 450:138409. https://doi.org/10.1016/j.cej.2022.138409

    Article  CAS  Google Scholar 

  10. Zhang T et al (2021) Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation. Chem Eng J 421:127730. https://doi.org/10.1016/j.cej.2020.127730

    Article  CAS  Google Scholar 

  11. Hu S et al (2019) Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma. Plasma Sci Technol 21:015501. https://doi.org/10.1088/2058-6272/aade82

    Article  CAS  Google Scholar 

  12. Shang K et al (2020) Generation characteristics of long-lived active species in a water falling film DBD reactor. Plasma Chem Plasma Process 41:477. https://doi.org/10.1007/s11090-020-10124-9

    Article  CAS  Google Scholar 

  13. Murugesan P et al (2020) Water decontamination using non-thermal plasma: concepts, applications, and prospects. J Environ Chem Eng 8:104377. https://doi.org/10.1016/j.jece.2020.104377

    Article  CAS  Google Scholar 

  14. Guo H et al (2019) Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: mechanism and degradation pathway. J Hazard Mater 371:666. https://doi.org/10.1016/j.jhazmat.2019.03.051

    Article  CAS  PubMed  Google Scholar 

  15. Chen S et al (2018) Deep oxidation of NO by a hybrid system of plasma–N-type semiconductors: high-energy electron-activated “pseudo photocatalysis” behavior. Environ Sci Technol 52:8568. https://doi.org/10.1021/acs.est.8b00655

    Article  CAS  PubMed  Google Scholar 

  16. Liu X et al (2021) Degradation of tetracycline in water by gas–liquid plasma in conjunction with rGO-TiO2 nanocomposite. Plasma Sci Technol 23:115503. https://doi.org/10.1088/2058-6272/ac1323

    Article  CAS  Google Scholar 

  17. Bradu C et al (2020) Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture. J Phys D-Appl Phys 53:223001. https://doi.org/10.1088/1361-6463/ab795a

    Article  CAS  Google Scholar 

  18. Zhang C et al (2017) Factors influencing the discharge mode for microsecond-pulse gliding discharges at atmospheric pressure. IEEE Trans Dielectr Electr Insul 24:2148. https://doi.org/10.1109/tdei.2017.006262

    Article  Google Scholar 

  19. Tarabová B et al (2018) Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma. Plasma Process Polym 15:1800030. https://doi.org/10.1002/ppap.201800030

    Article  CAS  Google Scholar 

  20. Liu Z et al (2019) Quantifying the concentration and penetration depth of long-lived RONS in plasma-activated water by UV absorption spectroscopy. AIP Adv 9:015014. https://doi.org/10.1063/1.5037660

    Article  CAS  Google Scholar 

  21. Wang S et al (2019) Characteristic study of a transient spark driven by a nanosecond pulse power in atmospheric nitrogen using a water cathode. J Appl Phys. https://doi.org/10.1063/1.5050259

    Article  PubMed  Google Scholar 

  22. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19:19995. https://doi.org/10.3390/molecules191219995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seyama T et al (2012) Kinetics of photocatalytic degradation of trichloroethylene in aqueous colloidal solutions of TiO2 and WO3 nanoparticles. J Photochem 249:15. https://doi.org/10.1016/j.jphotochem.2012.09.001

    Article  CAS  Google Scholar 

  24. Niu J et al (2013) Spectroscopic diagnostics of plasma-assisted catalytic systems for NO removal from NO/N2/O2/C2H4 mixtures. Catal Today 211:58. https://doi.org/10.1016/j.cattod.2013.03.019

    Article  CAS  Google Scholar 

  25. Chen J et al (2022) Degradation of toluene in surface dielectric barrier discharge (SDBD) reactor with mesh electrode: synergistic effect of UV and TiO2 deposited on electrode. Chemosphere 288:132664. https://doi.org/10.1016/j.chemosphere.2021.132664

    Article  CAS  PubMed  Google Scholar 

  26. Li Z et al (2021) Insights into water film DBD plasma driven by pulse power for ibuprofen elimination in water: performance, mechanism and degradation route. Sep Purif Technol 277:119415. https://doi.org/10.1016/j.seppur.2021.119415

    Article  CAS  Google Scholar 

  27. Sakakura T et al (2020) Nitrogen fixation in a plasma/liquid interfacial reaction and its switching between reduction and oxidation. J Phys Chem C 124:9401. https://doi.org/10.1021/acs.jpcc.0c02392

    Article  CAS  Google Scholar 

  28. Wang S et al (2020) Microsecond pulse gas–liquid discharges in atmospheric nitrogen and oxygen: discharge mode, stability, and plasma characteristics. Plasma Process Polym 18:2000135. https://doi.org/10.1002/ppap.202000135

    Article  CAS  Google Scholar 

  29. Mohd Razali NA et al (2021) Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants. J Clean Prod 309:127438. https://doi.org/10.1016/j.jclepro.2021.127438

    Article  CAS  Google Scholar 

  30. Duan L et al (2021) Understanding of TiO2 catalysis mechanism in underwater pulsed discharge system: charge carrier generation and interfacial charge-transfer processes. Chemosphere 267:129249. https://doi.org/10.1016/j.chemosphere.2020.129249

    Article  CAS  PubMed  Google Scholar 

  31. Shutov DA et al (2023) The chemical composition of species formed in a water anode under the action of a direct current electric discharge: comparison with liquid cathode—experiment and simulation. Plasma Chem Plasma Process 43:577. https://doi.org/10.1007/s11090-023-10322-1

    Article  CAS  Google Scholar 

  32. Kučerová K et al (2020) Transient spark discharge generated in various N2/O2 gas mixtures: reactive species in the gas and water and their antibacterial effects. Plasma Chem Plasma Process 40:749. https://doi.org/10.1007/s11090-020-10082-2

    Article  CAS  Google Scholar 

  33. Dinh DK et al (2021) Reducing energy cost of in situ nitrogen fixation in water using an arc-DBD combination. Plasma Sources Sci Technol 30:055020. https://doi.org/10.1088/1361-6595/abff72

    Article  CAS  Google Scholar 

  34. Shu Z et al (2021) Preliminary study of an open-air water-contacting discharge for direct nitrogen fixation. Plasma Sci Technol 23:035501. https://doi.org/10.1088/2058-6272/abe037

    Article  CAS  Google Scholar 

  35. Lu X et al (2022) Discharge modes and liquid interactions for plasma-bubble discharges. J Appl Phys 132:073303. https://doi.org/10.1063/5.0094560

    Article  CAS  Google Scholar 

  36. Xiong Q et al (2018) Heat deposition in the thermal field of a micro-glow discharge: effect of humidity. Plasma Sources Sci Technol 27:095010. https://doi.org/10.1088/1361-6595/aacf30

    Article  CAS  Google Scholar 

  37. Liu K et al (2020) Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions. J Phys D-Appl Phys 54:065201. https://doi.org/10.1088/1361-6463/abc211

    Article  CAS  Google Scholar 

  38. Thagard SM et al (2009) Electrical discharges in polar organic liquids. Plasma Process Polym 6:741. https://doi.org/10.1002/ppap.200900017

    Article  CAS  Google Scholar 

  39. Pattyn C et al (2020) Potential of N2/O2 atmospheric pressure needle-water DC microplasmas for nitrogen fixation: nitrite-free synthesis of nitrates. Phys Chem Chem Phys 22:24801. https://doi.org/10.1039/d0cp03858j

    Article  CAS  PubMed  Google Scholar 

  40. Hamdan A et al (2023) Interaction of a pulsed nanosecond discharge in air in contact with a suspension of crystalline nanocellulose (CNC). Plasma Chem Plasma Process 43:849–865. https://doi.org/10.1007/s11090-023-10335-w

    Article  CAS  Google Scholar 

  41. Zhang Z et al (2020) Interface reactions between water and ionic wind generated by d.c. corona discharge in nitrogen. Plasma Sources Sci Technol 29:095022. https://doi.org/10.1088/1361-6595/abb0d1

    Article  CAS  Google Scholar 

  42. Ráhel J, Sherman DM (2005) The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. J Phys D Appl Phys 38:547. https://doi.org/10.1088/0022-3727/38/4/006

    Article  CAS  Google Scholar 

  43. Wang S et al (2019) Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: effect of grounding configuration. Plasma Process Polym 17:1900146. https://doi.org/10.1002/ppap.201900146

    Article  CAS  Google Scholar 

  44. Yue Y et al (2021) Spatially and temporally resolved H and OH densities in a nanosecond pulsed plasma jet: an analysis of the radical generation, transport, recombination and memory effects. J Phys D Appl Phys 54:115202. https://doi.org/10.1088/1361-6463/abce2a

    Article  CAS  Google Scholar 

  45. Dedrick J et al (2012) Control of diffuse and filamentary modes in an RF asymmetric surface barrier discharge in atmospheric-pressure argon. Plasma Sources Sci Technol 21:055016. https://doi.org/10.1088/0963-0252/21/5/055016

    Article  CAS  Google Scholar 

  46. Yan H et al (2013) Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog Nat Sci: Mater Int 23:402. https://doi.org/10.1016/j.pnsc.2013.06.002

    Article  CAS  Google Scholar 

  47. Hui XuLL, Song Y, Huang L, Li Y, Chen Z, Zhang Qi, Li H (2015) BN nanosheets modified WO3 photocatalysts for enhancing photocatalytic properties under visible light irradiation. J Alloy Compd 660:48. https://doi.org/10.1016/j.jallcom.2015.11.042

    Article  CAS  Google Scholar 

  48. Jae Young Bae TKY, Ahn K-S, Kim J-H (2010) Visible-photoresponsive nitrogen-doped mesoporous TiO2 films for photoelectrochemical cells. Bull Korean Chem Soc 31:925. https://doi.org/10.5012/bkcs.2010.31.04.925

    Article  CAS  Google Scholar 

  49. Wandell RJ et al (2019) Formation of nitrogen oxides by nanosecond pulsed plasma discharges in gas–liquid reactors. Plasma Chem Plasma Process 39:643. https://doi.org/10.1007/s11090-019-09981-w

    Article  CAS  Google Scholar 

  50. Kunhardt EE (1980) Electrical breakdown of gases: the prebreakdown stage. IEEE Trans Plasma Sci PS- 8:130

    Article  Google Scholar 

  51. Kovačević VV et al (2018) The effect of liquid target on a nonthermal plasma jet—imaging, electric fields, visualization of gas flow and optical emission spectroscopy. J Phys D Appl Phys 51:065202. https://doi.org/10.1088/1361-6463/aaa288

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (Grant Nos. 52277151 and 51907088) and Innovative Talents Team Project of ‘Six Talent Peaks’ of Jiangsu Province (No. TD-JNHB-006).

Author information

Authors and Affiliations

Authors

Contributions

YY wrote the main manuscript text, conducted the experiments and visualized the data. ZZ analyzed study data. SW developed the methodology, wrote and reviewed the manuscript. ZF contributed to the conceptualization and reviewed the manuscript.

Corresponding author

Correspondence to Sen Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Zhou, Z., Wang, S. et al. Characteristics and Stability of Pulsed Gas–Liquid Discharge with the Addition of Photocatalysts. Plasma Chem Plasma Process 44, 335–352 (2024). https://doi.org/10.1007/s11090-023-10426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10426-8

Keywords

Navigation