Skip to main content
Log in

Dirac representation of the \(SO(3,2)\) group and the Landau problem

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

By systematically studying the infinite degeneracy and constants of motion in the Landau problem, we obtain a central extension of the Euclidean group in two dimension as a dynamical symmetry group, and \(Sp(2,\mathbb{R})\) as the spectrum generating group, irrespective of the choice of the gauge. The method of group contraction plays an important role. Dirac’s remarkable representation of the \(SO(3,2)\) group and the isomorphism of this group with \(Sp(4,\mathbb{R})\) are revisited. New insights are gained into the meaning of a two-oscillator system in the Dirac representation. It is argued that because even the two-dimensional isotropic oscillator with the \(SU(2)\) dynamical symmetry group does not arise in the Landau problem, the relevance or applicability of the \(SO(3,2)\) group is invalidated. A modified Landau–Zeeman model is discussed in which the \(SO(3,2)\) group isomorphic to \(Sp(4,\mathbb{R})\) can arise naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA (1980).

    MATH  Google Scholar 

  2. L. Schiff, Quantum Mechanics, McGraw-Hill, New York (1968).

    Google Scholar 

  3. J. M. Jauch and E. L. Hill, “On the problem of degeneracy in quantum mechanics,” Phys. Rev., 57, 641–645 (1940).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. V. A. Dulock and H. V. McIntosh, “Degeneracy of cyclotron motion,” J. Math. Phys., 7, 1401–1412 (1966).

    Article  ADS  Google Scholar 

  5. M. H. Johnson and B. A. Lippmann, “Motion in a constant magnetic field,” Phys. Rev., 76, 828–832 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. E. Inonu and E. P. Wigner, “On the contraction of groups and their representations,” Proc. Nat. Acad. Sci. USA, 39, 510–524 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. U. Niederer, “The maximal kinematical invariance group of the harmonic oscillator,” Helv. Phys. Acta, 46, 191–200 (1973).

    Google Scholar 

  8. M. R. Kibler, “On the use of the group SO\((4,2)\) in atomic and molecular physics,” Molecular Phys., 102, 1221–1229 (2004).

    Article  ADS  Google Scholar 

  9. T. Dereli, P. Nounahon, and T. Popov, “A remarkable dynamical symmetry of the Landau problem,” J. Phys.: Conf. Ser., 2191, 012009, 17 pp. (2022).

    Google Scholar 

  10. P. A. M. Dirac, “A remarkable representation of the \(3+2\) de Sitter group,” J. Math. Phys., 4, 901–909 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. Baskal, Y. S. Kim, and M. E. Noz, “Einstein’s \(E=mc^2\) derivable from Heisenberg’s uncertainty relations,” Quantum Rep., 1, 236–251 (2019); arXiv: 1911.03818.

    Article  Google Scholar 

  12. H. V. McIntosh, “On accidental degeneracy in classical and quantum mechanics,” Amer. J. Phys., 27, 620–625 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. C. Tiwari, “Pancharatnam phase for photon,” Optik, 98, 32–34 (1993).

    Google Scholar 

  14. S. C. Tiwari, “Coulomb-quantum oscillator correspondence in two dimension, pure gauge field and half-quantized vortex,” Modern Phys. Lett. A, 34, 1950128, 12 pp. (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J. B. Ehrman, “On the unitary irreducible representations of the universal covering group of the \(3+2\) de Sitter group,” Proc. Cambridge Philos. Soc., 53, 290–303 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P. A. M. Dirac, “A positive-energy relativistic wave equation,” Proc. Roy. Soc. A, 322, 435–445 (1971).

    ADS  Google Scholar 

  17. P. A. M. Dirac, “A positive-energy relativistic wave equation II,” Proc. R. Soc. London Ser. A, 328, 1–7 (1972).

    Article  ADS  Google Scholar 

  18. N. T. Evans, “Discrete series for the universal covering group of the \(3+2\) dimensional de Sitter group,” J. Math. Phys., 8, 170–184 (1967).

    Article  ADS  MATH  Google Scholar 

  19. H. L. Stormer, “Nobel Lecture: the fractional quantum Hall effect,” Rev. Modern Phys., 71, 875–889 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I thank the referee for the constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Tiwari.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 237–259 https://doi.org/10.4213/tmf10472.

Appendix

In the matrix representation of Hamiltonian (36), the eigenvalues and eigenvectors were calculated in [4] in terms of the monomials \((x, y, p_x, p_y)\). The eigenvectors are

$$ \begin{aligned} \, & u=[(\omega_{ \scriptscriptstyle{\mathrm L} }^2+\omega^2)m]^{1/2}(x+iy)+im^{-1/2}(p_x+ip_y), \\ & v=[(\omega_{ \scriptscriptstyle{\mathrm L} }^2+\omega^2) m]^{1/2}(x-iy)+im^{-1/2}(p_x-ip_y). \end{aligned}$$
(70)
Linear combinations of the products of these quantities constitute the constants of motion
$$ K=\frac{u^{ \scriptscriptstyle{R} }v^*+u^{*R}v}{\sqrt{R}(u u^*)^{(R-1)/2}},\qquad L=i\frac{u^{ \scriptscriptstyle{R} }v^*-u^{*R}v}{\sqrt{R}(uu^*)^{(R-1)/2}},\qquad D=\frac{uu^*-Rvv^*}{R}.$$
(71)
These constants of motion together with the Hamiltonian \(H_{ \scriptscriptstyle{\mathrm Z} }\) satisfy the \(SU(2)\) Lie algebra.

In the limit case \(\omega\to 0\), expressions (43) can be obtained from the general expressions (70). For convenience, the authors of [4] let the constants of motion be denoted as

$$ S=\frac{m^{1/2}}{4i}(v-v^*),\qquad Q=\frac{m^{1/2}}{4}(v+v^*).$$
(72)
In this paper, \((S,Q)\) correspond to Eqs. (26).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S.C. Dirac representation of the \(SO(3,2)\) group and the Landau problem. Theor Math Phys 217, 1621–1639 (2023). https://doi.org/10.1134/S0040577923110016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923110016

Keywords

Navigation