Skip to main content
Log in

Effect of Geometric Parameters of Metallic Nanoprisms on the Plasmonic Resonance Wavelength

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study the effect of geometric dimensions on the optical properties of equilateral triangular gold and silver nanoprisms with rounded corners. An analytical expression for calculating the spectral characteristics of the main longitudinal plasmonic resonance of such nanoprisms is obtained. As variables, the expression includes the nanoprism dimensions, its composition, and the permittivity of the surrounding environment. Our results demonstrate that the extinction cross sections can be adequately described by this expression for nanoprisms with edge lengths up to a few hundred nanometers. We show that the scattering of free electrons from the metal/environment interface in metallic nanoprisms can be described with the help of the size-dependent dielectric function. Using a simple relation, we evaluate the necessary effective size parameter, which allows one to achieve a good agreement with experimental data. The results obtained are of interest for solving a number of fundamental problems in nanophotonics and nanoplasmonics, as well as for applications in the development of next-generation optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pitarke, P. Xu, X. Yang, et al., Rep. Prog. Phys., 70, (2006); DOI: https://doi.org/10.1088/0034-4885/70/1/R01

  2. N. J. Halas, S. Lal, W.-S. Chang, et al., Chem. Rev., 111, 3913 (2011); DOI: https://doi.org/10.1021/cr200061k

    Article  Google Scholar 

  3. A. P. Pushkarev and M. N. Bochkarev, Russ. Chem. Rev., 85, 1338 (2016); DOI: https://doi.org/10.1070/RCR4665

    Article  ADS  Google Scholar 

  4. N. G. Khlebtsov, L. A. Dykman, and B. N. Khlebtsov, Russ. Chem. Rev., 91, RCR5058 (2022); DOI: https://doi.org/10.57634/RCR5058

  5. W. Ou, B. Zhou, J. Shen, et al., Science, 24, 101982 (2021); DOI: https://doi.org/10.1016/j.isci.2020.101982

    Article  Google Scholar 

  6. M. Seyyedi, A. Rostami, S. Matloub, Opt. Quant. Electron., 52, 308 (2020); DOI: https://doi.org/10.1007/s11082-020-02417-2

    Article  Google Scholar 

  7. S. A. Bansal, V. Kumar, J. Karimi, et al., Nanoscale Adv., 2, 3764 (2020); DOI: https://doi.org/10.1039/D0NA00472C

    Article  ADS  Google Scholar 

  8. A. U. Khan, Y. Guo, X. Chen, and G. Liu, ACS Nano, 13, 4255 (2019); DOI: https://doi.org/10.1021/acsnano.8b09386

    Article  Google Scholar 

  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, Weinheim (2004).

    Google Scholar 

  10. N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transf., 280, 108069, (2022); DOI: https://doi.org/10.1016/j.jqsrt.2022.108069

    Article  Google Scholar 

  11. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, Nanotechnology, 22, 265705 (2011).

    Article  ADS  Google Scholar 

  12. V. S. Lebedev, A. G. Vitukhnovsky, A. Yoshida, et al., Colloids Surf. A Physicochem. Eng. Asp., 326, 204 (2008); DOI: https://doi.org/10.1016/j.colsurfa.2008.06.027

    Article  Google Scholar 

  13. V. S. Lebedev and A. S. Medvedev, Quantum Electron., 42, 701 (2012); DOI: https://doi.org/10.1070/qe2012v042n08abeh014833

    Article  ADS  Google Scholar 

  14. A. D. Kondorskiy, K. S. Kislov, N. T. Lam, and V. S. Lebedev, J. Russ. Laser Res., 36, 175 (2015); DOI: https://doi.org/10.1007/s10946-015-9491-2

    Article  Google Scholar 

  15. A. D. Kondorskiy, V. S. Lebedev, J. Russ. Laser Res., 42, 697 (2021); DOI: https://doi.org/10.1007/s10946-021-10012-3

    Article  Google Scholar 

  16. L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, et al., ACS Nano, 8, 5833 (2014); DOI: https://doi.org/10.1021/nn500727w

    Article  Google Scholar 

  17. L. Scarabelli, L. M. Liz-Marzán, ACS Nano, 15, 18600 (2021); DOI: https://doi.org/10.1021/acsnano.1c10538

  18. N. Takeshima, K. Sugawa, H. Tahara, et al., Nanoscale Res. Lett., 15, 15 (2020); DOI: https://doi.org/10.1186/s11671-020-3248-8

    Article  ADS  Google Scholar 

  19. Y. Wang, X. Li, A. Wang, et al., AJOP, 9, 18 (2021); DOI: https://doi.org/10.11648/j.ajop.20210901.13

    Article  Google Scholar 

  20. A. D. Kondorskiy, N. T. Lam, and V. S. Lebedev, J. Russ. Laser Res., 39, 56 (2018); DOI: https://doi.org/10.1007/s10946-018-9689-1

    Article  Google Scholar 

  21. N. T. Lam, A. D. Kondorskiy, and V. S. Lebedev, Bull. Lebedev Phys. Inst., 46, 390 (2019); DOI: https://doi.org/10.3103/S1068335619120066

    Article  ADS  Google Scholar 

  22. S. Thakur, S. M. Borah, A. Singh, et al., J. Electron. Mater., 52, 4878 (2023); DOI: https://doi.org/10.1007/s11664-023-10422-w

    Article  ADS  Google Scholar 

  23. E. C. Le Ru and P. G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier, Amsterdam (2009).

    Google Scholar 

  24. H. Kuwata, H. Tamaru, K. Esumi, et al., Appl. Phys. Lett., 83, 4625 (2003); DOI: https://doi.org/10.1063/1.1630351

    Article  ADS  Google Scholar 

  25. R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, Chem. Soc. Rev., 46, 6710 (2017); DOI: https://doi.org/10.1039/C6CS00919K

  26. N. G. Khlebtsov, S. V. Zarkov, V. A. Khanadeeva, and Yu. A. Avetisyan, Nanoscale, 12, 19963 (2020); DOI: https://doi.org/10.1039/d0nr02531c

    Article  Google Scholar 

  27. github.com/kondorskiy/triangle

  28. B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, Quantum Electron., 45, 1153 (2015); DOI: https://doi.org/10.1070/qe2015v045n12abeh015869

    Article  ADS  Google Scholar 

  29. U. Kreibig, J. Phys. F: Metal Phys., 4, 999 (1974); DOI: https://doi.org/10.1088/0305-4608/4/7/007

    Article  ADS  Google Scholar 

  30. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin/Heidelberg (1995).

    Book  Google Scholar 

  31. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, 4370 (1972); DOI: https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  32. R. L. Olmon, B. Slovick, T. W. Johnson, et al., Phys. Rev. B, 86, 235147 (2012); DOI: https://doi.org/10.1103/PhysRevB.86.235147

    Article  ADS  Google Scholar 

  33. E. D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic, San Diego (1991), Vol. II.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey D. Kondorskiy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondorskiy, A.D., Mekshun, A.V. Effect of Geometric Parameters of Metallic Nanoprisms on the Plasmonic Resonance Wavelength. J Russ Laser Res 44, 627–636 (2023). https://doi.org/10.1007/s10946-023-10171-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10171-5

Keywords

Navigation