Skip to main content
Log in

Evolution of Rotational Motion of the Planet Earth under the Influence of Internal Dissipative Forces

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The influence of internal dissipation on the rotational motion of the Earth in the gravitational field of the Sun and Moon is studied within the model of M.A. Lavrentiev. The averaged equations of second approximation describing the evolution of the Earth’s rotation axis and the magnitude of its angular velocity are obtained. The dependence of the rate of evolution on the values of the model parameters is studied. Phase trajectories of the evolutionary process are constructed for different parameter values. It is shown that the observed drift of the Earth’s magnetic poles can be explained within the framework of a mechanical model by the angular acceleration of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Beletskii, V.V., Dvizhenie sputnika otnositel’no tsentra mass v gravitatsionnom pole (Satellite Motion Relative to the Center of Mass in a Gravitational Field), Moscow: Izd. Mosk. Gos. Univ., 1975.

  2. Moiseev, N.N. and Rumyantsev, V.V., Dinamika tela s polostyami, soderzhashchimi zhidkost’ (Dynamics of a Body with Cavities Containing Fluid), Moscow: Nauka, 1965.

  3. Chernous’ko, F.L., Dvizhenie tverdogo tela s polostyami, soderzhashchimi vyazkuyu zhidkost’ (Motion of a Rigid Body with Cavities Containing ф Viscous Fluid), Moscow: Vychisl. tsentr Akad. Nauk SSSR, 1968.

  4. Sidorenko, V.V., The evolution of the rotational motion of a planet with a liquid core, Astron. Vestn., 1993, vol. 27, no. 2, pp. 119–127.

    ADS  Google Scholar 

  5. Chernous’ko, F.L., On the motion of a rigid body containing a spherical damper, Prikl. Mekh. Tekh. Fiz., 1968, no. 1, pp. 73–79.

  6. Amel’kin, N.I., On asymptotic properties of satellite motions in a central field due to internal dissipation, Prikl. Mat. Mekh., 2011, vol. 75, no. 2, pp. 204–223.

    Google Scholar 

  7. Amel’kin, N.I. and Kholoshchak, V.V., On the stability of stationary rotations of a satellite with internal damping in a central gravitational field, Prikl. Mat. Mekh., 2017, vol. 81, no. 2, pp. 123–136.

    MATH  Google Scholar 

  8. Amel’kin, N.I. and Kholoshchak, V.V., Evolution of the rotational movement of a dynamically symmetric satellite with inner damping in a circular orbit, Mech. Solids, 2019, vol. 54, pp. 179–189. https://doi.org/10.3103/S0025654419030014

    Article  ADS  MATH  Google Scholar 

  9. Amel’kin, N.I. and Kholoshchak, V.V., Rotational motion of a non-symmetrical satellite with a damper in a circular orbit, Mech. Solids, 2019, vol. 54, pp. 190–203. https://doi.org/10.3103/S0025654419030026

    Article  ADS  MATH  Google Scholar 

  10. Amel’kin, N.I., Evolution of rotational motion of a planet in a circular orbit under the influence of internal elastic and dissipative forces, Mech. Solids, 2020, vol. 54, pp. 234–247. https://doi.org/10.3103/S0025654420020053

    Article  ADS  Google Scholar 

  11. Munk, W. and MacDonald, J., The Rotation of the Earth, London: Cambridge Univ. Press, 1960.

    MATH  Google Scholar 

  12. Alfvén, H. and Arrhenius, G., Evolution of the Solar System, Washington, DC: NASA, 1976.

    Google Scholar 

  13. Murray, C. and Dermott, S., Solar System Dynamics, London: Cambridge Univ. Press, 2000.

    Book  MATH  Google Scholar 

  14. Vil’ke, V.G., Kopylov, S.A., and Markov, Yu.G., Evolution of rotational motion of a viscoelastic sphere in the central Newtonian force field, Prikl. Mat. Mekh., 1985, vol. 49, no. 1, pp. 25–34.

    MATH  Google Scholar 

  15. Jeffreys, H., The Earth: Its Origin, History and Physical Constitution, London: Cambridge Univ. Press, 1960, 4th ed.

    MATH  Google Scholar 

  16. Bogolyubov, N.N. and Mitropol’skii, Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii (Asymptotic Methods in the Theory of Nonlinear Oscillations), Moscow: Nauka, 1974.

  17. Zhuravlev, V.F. and Klimov, D.M., Prikladnye metody v teorii kolebanii (Applied Methods in the Theory of Oscillations), Moscow: Nauka, 1988.

  18. Tikhonov, A.N., Systems of differential equations containing small parameters at derivatives, in Matematicheskii sbornik (Mathematical Collection), 1952, vol. 31 (73), no. 3, pp. 575–586.

  19. Alken, P., Thébault, E., Beggan, C., et al., International Geomagnetic Reference Field: The thirteenth generation, Earth, Planets Space, 2021, vol. 73, no. 1, pp. 49. https://doi.org/10.1186/s40623-020-01288-x

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to D.A. Pritykin for discussion of the work and suggestions on its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Amelkin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelkin, N.I. Evolution of Rotational Motion of the Planet Earth under the Influence of Internal Dissipative Forces. Cosmic Res 61, 510–521 (2023). https://doi.org/10.1134/S001095252370051X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001095252370051X

Keywords:

Navigation