Skip to main content
Log in

Regularity of the Pressure Function for Weak Solutions of the Nonstationary Navier–Stokes Equations

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We study the nonstationary system of Navier–Stokes equations for an incompressible fluid. Based on a regularized problem that takes into account the relaxation of the velocity field into a solenoidal field, the existence of a pressure function almost everywhere in the domain under consideration for solutions in the Hopf class is substantiated. Using the proposed regularization, we prove the existence of more regular weak solutions of the original problem without smallness restrictions on the original data. A uniqueness theorem is proven in the two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, Providence, RI: Am. Math. Soc., 1977. Translated under the title: Uravneniya Nav’e–Stoksa. Teoriya i chislennyi analiz, Moscow: Mir, 1981.

    MATH  Google Scholar 

  2. Smagulov, Sh., On a nonlinear equation with a small parameter that approximates the Navier–Stokes equation, Tr. V Vsesoyuzn. semin. po chislennym metodam mekh. vyazkoi zhidkosti (Proc. V All-Union Semin. Numer. Methods Viscous Fluid Mech.) (Novosibirsk, 1975), vol 1, pp. 123–134.

  3. Volkov, P.K. and Pereverzev, A.V., Finite element method for solving boundary value problems of regularized incompressible fluid equations in “velocity–pressure” variables, Mat. Model., 2003, vol. 15, no. 3, pp. 15–28.

    MATH  Google Scholar 

  4. Fedoseyev, A.I. and Alexeev, B.V., Simulation of viscous flows with boundary layers within multiscale model using generalized hydrodynamics equations, Int. Conf. Comput. Sci. ICCS (2010).

  5. Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Großgleichungen, Math. Nachr., 1951, vol. 4, pp. 213–231.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ladyzhenskaya, O.A., Solution “in the large” of the boundary value problem for the Navier–Stokes equations in the case of two spatial variables, Dokl. Akad. Nauk SSSR, 1958, vol. 123, no. 3, pp. 427–429.

    Google Scholar 

  7. Kiselev, A.A. and Ladyzhenskaya, O.A., On the existence of unique solutions of a nonstationary problem for a viscous incompressible fluid, Izv. Akad. Nauk SSSR. Ser. Mat., 1957, vol. 21, pp. 655–680.

    MathSciNet  Google Scholar 

  8. Lions, J.-L. and Magenes, E., Problèmes aux limites non homogènes et applications, Paris: Dunod, 1968. Translated under the title: Neodnorodnye granichnye zadachi i ikh prilozheniya, Moscow: Mir, 1971.

    MATH  Google Scholar 

  9. Galdi, G.P., An introduction to the Navier–Stokes initial–boundary value problem, Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, Galdi, G.P., Heywood, J.G., and Rannacher, R., Basel: Springer, 2000.

  10. Sohr, H. and Wahl, W., On the regularity of the pressure of weak solutions of Navier–Stokes equations, Archiv Math., 1986, vol. 46, pp. 428–439.

    Article  MathSciNet  MATH  Google Scholar 

  11. Simon, J., On the existence of the pressure for solutions of the variational Navier–Stokes equations, J. Math. Fluid Mech., 1999, vol. 1, no. 3, pp. 225–234.

    Article  MathSciNet  MATH  Google Scholar 

  12. Langa, J.A., Real, J., and Simon, J., Existence and regularity of the pressure for the stochastic Navier–Stokes equations, Appl. Math. Optim., 2003, vol. 48, pp. 195–210.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bensoussan, A., Stochastic Navier–Stokes equations, Acta Appl. Math., 1995, vol. 38, no. 3, pp. 267–304.

    Article  MathSciNet  MATH  Google Scholar 

  14. Capinski, M. and Peszat, S., On the existence of solution to stochastic Navier–Stokes equations, Nonlinear Anal., 2001, vol. 44, pp. 141–177.

    Article  MathSciNet  MATH  Google Scholar 

  15. Seregin, G.A., Local regularity for suitable weak solutions of the Navier–Stokes equations, Russ. Math. Surv., 2007, no. 62. N. 3, pp. 595–614.

  16. Seregin, G.A., Differential properties of weak solutions to the Navier–Stokes equations, St. Petersb. Math. J., 2003, vol. 14, no. 1, pp. 147–178.

    MathSciNet  Google Scholar 

  17. Shilkin, T.N., Complete internal regularity of solutions of the two-dimensional modified Navier–Stokes system, St. Petersb. Math. J., 2002, vol. 13, no. 1, pp. 123–148.

    MATH  Google Scholar 

  18. Seregin, G.A. and Shilkin, T.N.., Liouville-type theorems for the Navier–Stokes equations, Russ. Math. Surv., 2018, vol. 73, no. 4, pp. 661–724.

    Article  MathSciNet  MATH  Google Scholar 

  19. Amosova, E.V., On the regularity of solutions of unsteady Navier–Stokes equations, Mat. probl. mekh. sploshnykh sred: tez. dokl. Vseross. konf. shkoly molodykh uchen., posvyashch. 100-letiyu akad. L.V. Ovsyannikova (Math. Probl. Continuum Mech.: Abstr. Rep. All-Russ. Conf. School Young Sci. Dedicated to 100th Anniv. Acad. L.V. Ovsyannikov) (Novosibirsk 2019), pp. 27–.

  20. Sobolev, S.L., Nekotorye primeneniya funktsional’nogo analiza v matematicheskoi fizike (Some Applications of Functional Analysis in Mathematical Physics), Moscow: Nauka, 1988.

    Google Scholar 

  21. Antontsev, S.N., Kazhikhov, A.V., and Monakhov, V.N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei (Boundary Value Problems of Mechanics of Inhomogeneous Fluids), Novosibirsk: Nauka, 1983.

    Google Scholar 

  22. Agmon, S., Douglis, A., and Nirenberg, L., Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. I , New York: Interscience, 1959. Translated under the title: Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obshchikh granichnykh usloviyakh, Moscow: Izd. Inostr. Lit., 1962.

    Book  MATH  Google Scholar 

  23. Lukina, E.V., Global solutions of multidimensional approximate Navier–Stokes equations of a viscous gas, Sib. Math. J., 2003, vol. 44, no. 2, pp. 311–321.

    Article  MathSciNet  MATH  Google Scholar 

  24. Fursikov, A., Gunzburger, M., and Hou, L., Trace theorems for three-dimensional, time-dependent solenoidal vector fields and their applications, Trans.Am. Math. Soc., 2001, vol. 354, no. 3, pp. 1079–1116.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was carried out at the Far Eastern Center for Mathematical Research with financial support from the Ministry of Science and Higher Education of the Russian Federation as part of the implementation of the program for the development of regional scientific and educational mathematical centers under agreement no. 075-02-2023-946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Amosova.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosova, E.V. Regularity of the Pressure Function for Weak Solutions of the Nonstationary Navier–Stokes Equations. Diff Equat 59, 1199–1215 (2023). https://doi.org/10.1134/S0012266123090069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123090069

Navigation