Skip to main content
Log in

FRS (Fault Rating System): a quantitative classification of active faults for hazard evaluations

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The correct estimation of seismic hazards is a touchstone of seismic risk assessments. However, there is no quantitative or standard methodology to include the impacts of geological (i.e., seismo-tectonic) features of active faults or fault zones, and current classification schemes are not useful in hazard evaluations. Therefore, an attempt has been made to develop a methodology that integrates seismo-tectonic parameters of active faults to better inform urban and regional planning decisions. Fault rating system (FRS) provides a comparative review of faults/fault zones using a rating-based approach. In this approach, seven seismo-tectonic parameters are used to classify the fault/fault zone. Each of the seven parameters is assigned a value corresponding to the seismo-tectonic characteristics. The sum of the seven seismo-tectonic parameters is the fault index (FI) value, which lies in the range 0–100. A total of 64 important faults/fault zones were statistically analyzed to determine the best correlations with FI and moment magnitude (Mw) and peak ground acceleration (PGA). It was found that the FI values provide strong correlations with maximum Mw and PGA. It is proposed urban and regional planners use FRS to ensure a consistent approach in characterizing key aspects of active faults in earthquake-prone regions and in estimating ground motion parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  • Abe K (1982) Magnitude, seismic moment and apparent stress for major deep earthquakes. J Phys Earth 30(4):321–330

    Article  Google Scholar 

  • Abubakar Y (2012) Geomorphic evolution of the nushki segment of the chaman fault in Western Pakistan. A thesis of the faculty of the department of earth and atmospheric sciences, University of Houston

  • Adrian MB and Peter JH (2017) Eastern Denali Fault Surface Trace Map, Eastern Alaska and Yukon, Canada. Open-File Report 2017–1049 US Geological Survey

  • AFAD (2023) 06 Şubat 2023 Pazarcik (Kahramanmaraş) Mw: 7.7 ve Elbistan (Kahramanmaraş) Mw: 7.6 depremlerine ilişkin ön değerlendirme raporu. TC İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) Deprem Dairesi Başkanliği, Ankara/Türkiye

  • Akkaya DA, Yücemen MS (2000) Estimation of earthquake hazard based on extremes of local integral random functions. Eng Geol 58:53–66

    Article  Google Scholar 

  • Albini P, Pantosti D (2004) The 20 and 27 April 1894 Locris, Central Greece, earthquake sources through coeval records on macroseismic effects. Bull Seism Soc Am 94(4):1305–1326

    Article  Google Scholar 

  • Allen CR, Gillespie AR, Yuan H, Sieh Kerry E, Buchun Z, Chengnan Z (1984) Red River and associated faults, Yunnan Province, China; quaternary geology, slip rates, and seismic hazard. Geol Soc Am Bull 95(6):686–700

    Article  Google Scholar 

  • Allen CR, Zhuoli L, Hong Q, Xueze W, Huawei Z, Weishi H (1989) Segmentation and recent rupture history of the Xianshuihe Fault, Southwestern China. US Geol Surv Open File Rep 89–315:10–30

    Google Scholar 

  • Allen CR, Qian H, Wen X, Zhou H, Huang W (1991) Field study of a highly active fault zone: the Xianshuihe fault of southwestern China. Geol Soc Am Bull 103:1178–1199

    Article  Google Scholar 

  • Ambraseys NN (1971) Value of historical records of earthquakes. Nature 232:375–379

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K, Moustafa SSR, Nassir S, Al-Arifi N (2015) Maximum magnitude estimation considering the regional rupture character. J Seismol 19:695–719

    Article  Google Scholar 

  • Anderson DL (1971) The San Andreas Fault. Sci Am 225(5):52–71

    Article  Google Scholar 

  • Anderson JG, Wesnousky SG, Stirling MW (1996) Earthquake size as a function of fault slip rate. Bull Seismol Soc Am 86(3):683–690

    Article  Google Scholar 

  • Aung HH (2017) Myanmar Earthquake History. 14 – via University of Yangon, Printed by Wathan Press, pp 145

  • Barka AA (1992) The North Anatolian Fault zone. Ann Tec 6:164–195

    Google Scholar 

  • Bayrak E, Yilmaz Ş, Softa M, Turker T, Bayrak Y (2015) Earthquake hazard analysis for East Anatolian Fault Zone, Turkey. Nat Hazards 76:1063–1077

    Article  Google Scholar 

  • Bellier O, Sébrier M, Pramumijoyo S, Beaudouin Th, Harjono H, Bahar I, Forni O (1997) Paleoseismicity and seismic hazard along the Great Sumatran Fault Indonesia. Jour of Geodyn 24(1–4):169–183

    Article  Google Scholar 

  • Bernard P, Lyon-Caen H, Briole P, Deschamps A, Boudin F et al (2006) Seismicity, deformation and seismic hazard in the western rift of Corinth: new insights from the Corinth Rift Laboratory CRL. Tectonophysics 426(1–2):7–30

    Article  Google Scholar 

  • Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179

    Article  Google Scholar 

  • Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 6:2914–2926

    Article  Google Scholar 

  • Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for seismic hazard assessment applications: the case of central Apennines Italy. J Seismol 8:407–425

    Article  Google Scholar 

  • Bonilla MG, Mark RK, Lienkaemper JJ (1984) Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Bull Seismol Soc Am 74:2379–2411

    Google Scholar 

  • Bonilla MG, Buchanan JM (1970) Interim report on world-wide historic surface faulting. Open-File Report, U.S. Geological Survey, Reston, Virginia, pp 32

  • Borchardt GS, David L and Wills CJ (1999) Holocene slip rate of the Concord fault at Galindo Creek in Concord, California. National Earth-quake Hazards Program final technical report, US Geol Surv Libr, Reston, Va, pp 30

  • Bormann DG (2011) The moment magnitude Mw and the energy magnitude Me: common roots and differences. J Seismol 15(2):411–427

    Article  Google Scholar 

  • Bristol HM, Treworgy JD (1979) The Wabash Valley Fault System in south–eastern Illinois. Illinois Geol Surv Circ Rep 509:19

    Google Scholar 

  • Brocher TM, Baltay AS, Hardebeck JL, Pollitz FF et al (2015) The Mw 6.0 24 August 2014 South Napa Earthquake. Seismo Res Let 86(2A):309–326

    Article  Google Scholar 

  • Bryant WA, Cluett SE (1999) Fault number 54a, Calaveras fault zone, Northern Calaveras section, in Quaternary fault and fold database of the United States. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults. Accessed 06 Dec 2021

  • Bryant WA, Cluett SE (2002) Fault number 53a, Greenville fault zone, Clayton section, in Quaternary fault and fold database of the United States. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults. Accessed 06 Dec 2021

  • Bulut F, Bohnhoff M, Eken T, Janssen C, Kilic T, Dresen G (2012) The East Anatolian Fault Zone: seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. J Geophys Res 117:B07304. https://doi.org/10.1029/2011JB008966

    Article  Google Scholar 

  • Burtman VS, Molnar P (1993) Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geol Soc Am 281:1–76

    Google Scholar 

  • Chen WS, Yen IC, Fengler KP et al (2007) Late holocene paleoearthquake activity in the middle part of the Longitudinal Valley Fault, Eastern Taiwan. Earth Planet Sci Lett 264(3–4):420–437

    Article  Google Scholar 

  • Chevalier ML, Pan J, Li H, Wang M (2015) Quantification of both normal and right-lateral late Quaternary activity along the KongurShan extensional system Chinese Pamir. Terra Nova 27:379–391

    Article  Google Scholar 

  • Cluff LS, Cluff JL (1984) Importance of Assessing degrees of Fault Activity for Engineering Decisions. In: Proceedings of 8th World Conference on Earthquake Engineering 8WCEE, San Francisco, California

  • Cowie PA (1998) A healing–reloading feedback control on the growth rate of seismogenic faults. J Struct Geol 20:1075–1087

    Article  Google Scholar 

  • Cowie PA, Roberts GP (2001) Constraining slip rates and spacings for active normal faults. J Struct Geol 23:1901–1915

    Article  Google Scholar 

  • Crone AJ, Wheeler RL (2000) Data for Quaternary faults, liquefaction features, and possible tectonic features in the central and eastern United States, east of the Rocky Mountain Front, U.S Geol Surv Open File Rep 00–0260, pp 342

  • Crone AJ, Haller KM (1991) Segmentation and the coseismic behavior of Basin and Range normal faults: examples from east-central Idaho and southwestern Montana, USA. J Struct Geol 132:151–164

    Article  Google Scholar 

  • Csontos R, Arsdale RV (2008) New Madrid seismic zone fault geometry. Geosphere 4(5):802–813. https://doi.org/10.1130/GES00141.1

    Article  Google Scholar 

  • Danciu L, Sesetyan K, Demircioglu M, Gülen L et al (2018) The 2014 Earthquake Model of the Middle East: seismogenic sources. B Earthq Eng 16:3465–3496

    Article  Google Scholar 

  • Douglas J, Edwards B (2016) Recent and future developments in earthquake ground motion estimation. Earth Sci Rev 160:203–219

    Article  Google Scholar 

  • Douglas J (2011) Ground-motion prediction equations 1964–2010. Pacific Earthquake Engineering Research Center PEER Report 2011/102, University of California, Berkeley

  • ESA (1982). Seismotectonic study of Contra Loma dam and vicinity. Earth Sciences Associates, Final Report to U.S. Bureau of Reclamation, Denver, Colorado

  • Evans JP, Martindale D, Kendrick RD (2003) Geologic setting of the 1884 Bear Lake, Idaho, earthquake: rupture in the hanging wall of a basin and range normal fault revealed by historical and geological analyses. Bull Seismo Soc Am 93:1621–1632

    Article  Google Scholar 

  • Fan X, Juang CH, Wasowski J, Huang R, Xu Q, Scaringi G, Van Westen CJ, Havenith HB (2018) What we have learned from the 2008 Wenchuan Earthquake and its aftermath: a decade of research and challenges. Eng Geol 241:25–32

    Article  Google Scholar 

  • Field EH, Jordan TH, Page MT, Milner KR, Shaw BE, Dawson TE et al (2017) A synoptic view of the third uniform California earthquake rupture forecast (UCERF3). Seismo Res Lett 88(5):1259–1267

    Article  Google Scholar 

  • Gagnon K, Chadwell C, Norabuena E (2005) Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements. Nature 434:205–208

    Article  Google Scholar 

  • Galgana G, Hamburger M (2010) Geodetic Observations of Active Crustal Deformation in the Wabash Valley Seismic Zone and the Southern Illinois Basin. Seismol Res Lett 815:699–714

    Article  Google Scholar 

  • GNS (2021) New study says Alpine Fault quake interval shorter than thought: GNS Science. New Zealand Crown Research Institute, www.stuff.co.nz. Accessed 6 Mar 2021

  • Goto H, Tsutsumi H, Toda S et al (2017) Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults. Earth Planets Space 69:26. https://doi.org/10.1186/s40623-017-0603-9

    Article  Google Scholar 

  • Güllü H (2012) Prediction of peak ground acceleration by genetic expression programming and regression: a comparison using likelihood-based measure. Eng Geol 141:92–113

    Article  Google Scholar 

  • Haller KM, Lewis RS (2010) Fault number 2364a, Eastern Bear Lake fault, northern section, in Quaternary fault and fold database of the United States. US Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults. Accessed 19 Oct 2021

  • Hallo M, Opršal I, Asano K (2019) Seismotectonics of the 2018 northern Osaka M6.1 earthquake and its aftershocks: joint movements on strike-slip and reverse faults in inland Japan. Earth Planets Space 71:34. https://doi.org/10.1186/s40623-019-1016-8

    Article  Google Scholar 

  • Hanks TC, Bakun WH (2008) M—log A observations of recent large earthquakes. Bull Seismol Soc Am 98:490–494

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geoph Res 84:2348–2350

    Article  Google Scholar 

  • Hayakawa M (2015) Earthquake prediction with ratio techniques. Wiley, Singapore

    Book  Google Scholar 

  • Hjaltadóttir S (2010) Use of relatively located micro-earthquakes to map fault patterns and estimate the thickness of the brittle crust in Southwest Iceland. Master’s thesis, Faculty of Earth Sciences, University of Iceland, Reykjav´ık, Iceland

  • Hornblow S, Quigley M, Nicol A, Dissen R, Van Wang N (2014) Paleoseismology of the 2010 Mw 7.1 Darfield Canterbury, earthquake source, Greendale Fault ,New Zealand. Tectonophysics 637:178–190

    Article  Google Scholar 

  • JE (2021) Shallow inland earthquakes (Depths of 20 km or less). The headquarters for earthquake research promotion. https://www.hp1039.jishin.go.jp/eqchreng/3-1-2.htm. Accessed 26 June 2022

  • Jewell PW, Bruhn RL (2013) Evaluation of Wasatch fault segmentation and slip rates using Lake Bonneville shorelines. J Geophys Res Solid Earth 118:2528–2543

    Article  Google Scholar 

  • Johnston AC (1994) Seismotectonic interpretations and conclusions from the stable continental region seismicity database. In: Johnston AC, Coppersmith KJ, Kanter LR, Cornell CA (eds) The earthquakes of stable continental regions, vol 1. Assessment of large earthquake potential. Electric Power Research Institute, Palo Alto, California, pp 4–1–4–103

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong motion records including records from the 1979 Imperial Valley, California earthquake. Bull Seismol Soc Am 71:2011–2038

    Article  Google Scholar 

  • Junjie R, Shimin Z (2013) Estimation of recurrence interval of large earthquakes on the Central Longmen Shan Fault Zone based on seismic moment accumulation/release model. Sci World J 2013:1–8. https://doi.org/10.1155/2013/458341

    Article  Google Scholar 

  • Kalafat D, Görgün E (2019) Source characteristics and b-values of the Tuz Gölü Fault Zone in Central Anatolia, Turkey. J Asian Earth Sci 179:337–349

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geoph Res 82:2981–2987

    Article  Google Scholar 

  • Kanaori Y (2000) Seismic risk assessment of an active fault system: the example of the Tsurugawan—Isewan tectonic line. Eng Geol 56:109–123

    Article  Google Scholar 

  • Kase Y (2010) Slip-length scaling law for strike-slip multiple segment earthquakes based on dynamic rupture simulations. Bull Seism Soc Am 1002:473–481

    Article  Google Scholar 

  • Katpatal YB, Shirkhedkar SS (2021) Fault importance index FII, as earthquake source criteria for seismic zonation: case study of India. Arab J Geosci 14:186. https://doi.org/10.1007/s12517-021-06528-2

    Article  Google Scholar 

  • Kayabali K (2002) Modeling of seismic hazard for Turkey using the recent neotectonic data. Eng Geol 63:221–232

    Article  Google Scholar 

  • Kayabali K, Akin M (2003) Seismic hazard map of Turkey using the deterministic approach. Eng Geol 69(1/2):127–137

    Article  Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 594:674–700

    Article  Google Scholar 

  • King G, Nabelek J (1985) Role of fault bends in the initiation and termination of earthquake rupture. Science 228(4702):984–987

    Article  Google Scholar 

  • Kirby E, Harkins N, Wang E, Shi X, Fan C, Burbank D (2007) Slip rate gradients along the eastern Kunlun fault. Tectonics 26:TC2010. https://doi.org/10.1029/2006TC002033

    Article  Google Scholar 

  • Konstantinou KI (2014) Moment magnitude–rupture area scaling and stress-drop variations for earthquakes in the Mediterranean region. Bull Seismol Soc Am 1045:2378–2386

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice-Hall international series in civil engineering and engineering mechanics Chapter 6. Prentice-Hall, New Jersey, pp 226–228

    Google Scholar 

  • Lefevre M, Klinger Y, Al-Qaryouti M et al (2018) Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations. Sci Rep 8:4511. https://doi.org/10.1038/s41598-018-22627-9

    Article  Google Scholar 

  • Leonard M (2010) Earthquake fault scaling: relating rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988

    Article  Google Scholar 

  • LePichon X et al (2016) Propagation of a strike-slip plate boundary within an extensional environment: the westward propagation of theNorth Anatolian Fault. Can J Earth Sc 53:1416–1439

    Article  Google Scholar 

  • Li Y, Shan X, Qu C, Liu Y, Han N (2018) Crustal deformation of the Altyn Tagh fault based on GPS. J Geophys Res Solid Earth 123:10309–10322. https://doi.org/10.1029/2018JB015814

    Article  Google Scholar 

  • Liang L, Qiao X, Dai F, Zhong N, Jiang H (2021) Seismically triggered soft-sediment deformation structures in Tashkorgan lacustrine sediments, northeastern Pamir, China. Quat Int 604:82–92

    Article  Google Scholar 

  • Lienkaemper JJ, Barry GR, Smith FE, Mello JD, McFarlan FS (2013) The Greenville fault: preliminary estimates of its long-term creep rate along and seismic potential. Bull Seismol Soc Am 103(5):2729–2738

    Article  Google Scholar 

  • Lin A, Yamashita K (2013) Spatial variations in damage zone width along strike-slip faults: an example from active faults in southwest Japan. J Struct Geol 57:1–15

    Article  Google Scholar 

  • Lin A, Sano M, Wang M, Yan B, Bian D, Fueta R, Hosoya T (2017b) Paleoseismic study of the Kamishiro Fault on the northern segment of the Itoigawa-Shizuoka Tectonic Line, Japan. J Seismol 21(4):683–703

    Article  Google Scholar 

  • Lin A, Chen P, Satsukawa T, Sado K, Takahashi N, Hirata S (2017a) Millennium recurrence interval of morphogenic earthquakes on the seismogenic fault zone that triggered the 2016 Mw 7.1 Kumamoto earthquake, Southwest Japan. Bull Seismol Soc Am 107(6):2687–2702

    Article  Google Scholar 

  • Liu-Zeng J, Shao Y, Klinger Y, Xie K, Yuan D, Lei Z (2015) Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan Fault, China. J Geophys Res Solid Earth 120:8304–8333

    Article  Google Scholar 

  • Loh CH, Yeh YT, Jean WY, Yeh YH (1991) Probabilistic seismic risk analysis in the Taiwan area based on PGA and spectral amplitude attenuation formulas. Eng Geol 30:277–304

    Article  Google Scholar 

  • Long F, Wen XZ, Ruan X, Zhao M, Yi GX (2015) A more accurate relocation of the 2013 Ms7.0 Lushan, Sichuan, China, earthquake sequence, and the seismogenic structure analysis. J Seismol 19:653–665

    Article  Google Scholar 

  • Loveless JP, Meade BJ (2010) Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J Geophys Res 115:B02410. https://doi.org/10.1029/2008JB006248

    Article  Google Scholar 

  • Machette MN (2000) Active, capable, and potentially active faults; a paleoseismic perspective. J Geodyn 29:387–392

    Article  Google Scholar 

  • Matmon A, Schwartz DP, Haeussler PJ, Finkel R, Lienkaemper JJ, Stenner DH, Dawson TE (2006) Denali Fault slip rates and Holocene-late Pleistocene kinematics of central Alaska. Geology 34:645–648

    Article  Google Scholar 

  • Mohadjer S, Ehlers TA, Bendick R, Stübner K, Strube T (2016) A Quaternary fault database for central Asia. Nat Hazards Earth Syst Sci 16:529–542

    Article  Google Scholar 

  • Mouslopoulou V, Moraetis D, Benedetti L, Guillou V, Hristopulos D (2013) Paleoearthquake history of the Spili fault. Bull Geol Soc Greece 47:595–604

    Article  Google Scholar 

  • Mouslopoulou V, Moraetis D, Benedetti L, Guillou V, Bellier O, Hristopulos D (2014) Normal faulting in the forearc of the Hellenic subduction margin: Paleoearthquake history and kinematics of the Spili Fault, Crete, Greece. J Struct Geol 66:298–308

    Article  Google Scholar 

  • Mueller K, Rockwell T (1995) Late Quaternary activity of the Laguna Salada fault in northern Baja California, Mexico. Geol Soc Am Bull 107:8–18

    Article  Google Scholar 

  • Mueller K, Champion J, Guccione M, Kelson K (1999) Fault slip rates in the modern new madrid seismic zone. Science 286:1135–1138. https://doi.org/10.1126/science.286.5442.1135

    Article  Google Scholar 

  • Nakajima J, Kato A, Iwasaki T, Ohmi S, Okada T, Takeda T (2010) Deep crustal structure around the Atotsugawa fault system, central Japan: a weak zone below the seismogenic zone and its role in earthquake generation. Earth Planets Space 62(7):555–566

    Article  Google Scholar 

  • Norris RJ, Toy VG (2014) Continental transforms: a view from the Alpine Fault. J Struct Geol 64:3–31

    Article  Google Scholar 

  • Obermeier SF (1998) Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois, USA. Eng Geol 50:227–254

    Article  Google Scholar 

  • Pace B, Visini F, Peruzza L (2016) FiSH: MATLAB tools to turn fault data into seismic-hazard models. Seismol Res Lett 87(2A):374–386. https://doi.org/10.1785/0220150189

    Article  Google Scholar 

  • Pantosti D, Martini PM, De Papanastassiou D, Lemeille F, Palyvos N, Stavrakakis G (2004) Paleoseismological trenching across the Atalanti Fault Central Greece: evidence for the ancestors of the 1894 Earthquake during the Middle Ages and Roman Times. Bull Seismol Soc Am 94(2):531–549

    Article  Google Scholar 

  • Panza GF, Bela J (2020) NDSHA: a new paradigm for reliable seismic hazard assessment. Eng Geol 275:105403. https://doi.org/10.1016/j.enggeo.2019.105403

    Article  Google Scholar 

  • Paris G, Machette MN, Dart RL, Haller KM (2000) Map and database of quaternary faults and folds in Colombia and its Offshore Regions. USGS Open-File Report 00–0284:66

    Google Scholar 

  • Polina L (2019) Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartograph Rev 51(4):181–194

    Article  Google Scholar 

  • Prentice CS, Mann P, Crone AJ, Gold RD, Hudnut KW, Briggs RW, Koehler RD, Jean P (2010) Seismic hazard of the Enriquillo-Plantain Garden fault in Haiti inferred from paleoseismology. Nat Geosci 3:789–793

    Article  Google Scholar 

  • Qi S, Xu Q, Lan H, Zhang B, Liu J (2010) Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China. Eng Geol 116:95–108

    Article  Google Scholar 

  • Qiu J, Ji L, Liu L, Chuanjin L (2019) Seismogenic fault and tectonic significance of 1996 Karakoram Pass earthquake Ms 7.1, based on InSAR. Earth Planets Space 71:108. https://doi.org/10.1186/s40623-019-1089-4

    Article  Google Scholar 

  • Rhea S, Tarr AC, Hayes G, Villaseñor A, Furlong KP, Benz HM, (2010) Seismicity of the Earth 1900–2007, Kuril-Kamchatka arc and vicinity. US Geol Survey Open-File Report, 2010–1083-C

  • Robert ML, Pilar V, Jamie DH, William FR, Kate JC, Nicola JL (2021) Reconciling an early Nineteenth-Century rupture of the Alpine Fault at a Section End, Toaroha River, Westland, New Zealand. Bull Seismol Soc Am 111(1):514–540

    Article  Google Scholar 

  • Rodgers DW, Little TA (2006) World’s largest coseismic strike-slip offset: the 1855 rupture of the Wairarapa Fault, New Zealand, and implications for displacement/length scaling of continental earthquakes. J Geophys Res 111:B12408. https://doi.org/10.1029/2005JB004065

    Article  Google Scholar 

  • Ryan HF, Von Huene R, Wells RE, Scholl DW, Kirby S, Draut AE (2012) History of earthquakes and tsunamis along the eastern Aleutian-Alaska megathrust, with implications for tsunami hazards in the California Continental Borderland, in Dumoulin JA, and Dusel-Bacon C eds, Studies by the US Geological Survey in Alaska, 2011, US Geological Survey Professional Paper 1795–A, pp 31

  • Sabetta F, Pugliese A (1987) Attenuation of peak horizontal acceleration and velocity from Italian strong-motion records. Bull Seismol Soc Am 77:1491–1513

    Google Scholar 

  • Sadigh K, Chang CY, Egan JA, Makdisi F, Youngs RR (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 1(68):180–189

    Article  Google Scholar 

  • Saint Fleur N, Klinger Y, Feuillet N (2020) Detailed map, displacement, paleoseismology, and segmentation of the Enriquillo-Plantain Garden Fault in Haiti. Tectonophysics 778:228–368

    Article  Google Scholar 

  • Savvaidis A, Smirnov MY, Tranos MD, Pedersen LB, Chouliaras G (2012) The seismically active Atalanti fault in Central Greece: a steeply dipping fault zone imaged from magnetotelluric data. Tectonophysics 554–557:105–113. https://doi.org/10.1016/j.tecto.2012.06.002

    Article  Google Scholar 

  • Sawyer TL, Oswald JA, Rowley PC, Anderson RE (1998) Fault number 1582a, Independence Valley fault zone, northern section. In Quaternary fault and fold database of the United States, US Geological Survey website, http://earthquakes.usgs.gov/regional/qfaults

  • SCEDC (2021a) Elsinore Fault Zone. Southern California Earthquake Data Center. https://scedc.caltech.edu/earthquake/elsinore.html

  • SCEDC (2021b) Garlock Fault Zone. Southern California Earthquake Data Center https://scedc.caltech.edu/earthquake/garlock.html

  • SCEDC (2021c) Sierra Madre Earthquake. Southern California Earthquake Data Center https://scedc.caltech.edu/earthquake/sierramadre1991.html

  • SCEDC (2021d) Imperial Fault Zone. Southern California Earthquake Data Center https://scedc.caltech.edu/earthquake/imperial.html

  • Schaff DP, Bokelmann GHR, Beroza GC, Waldhauser F, Ellsworth WL (2002) High-resolution image of Calaveras Fault seismicity. J Geophys Res 107(B9):2186. https://doi.org/10.1029/2001JB000633

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542

    Article  Google Scholar 

  • Schurr B, Ratschbacher L, Sippel J, Gloaguen R, Yuan X, Mechie J (2014) Seismotectonics of the Pamir. Tectonics 33:1501–1518

    Article  Google Scholar 

  • Schweig Eugene S, Ellis Michael A (1994) Reconciling short recurrence intervals with minor deformation in the New Madrid Seismic Zone. Science 264(5163):1308–1311

    Article  Google Scholar 

  • Selcuk A, Erturac MK, Nomade S (2016) Geology of the Caldiran Fault, Eastern Turkey: age, slip rate and implications on the characteristic slip behaviour. Tectonophysics 680:155–173

    Article  Google Scholar 

  • Shaw John H, Plesch A, Dolan JF, Pratt TL, Patricia F (2002) Puente Hills Blind-Thrust System, Los Angeles, California. Bull Seismol Soc Am 92(8):2946–2960

    Article  Google Scholar 

  • Shi X, Sieh K, Weldon R, Zhu C, Han Y, Yang J (2014) Robinson SW (2018) Slip rate and rare large prehistoric earthquakes of the Red River fault, southwestern China. Geochem Geophys Geosyst 19:2031

    Google Scholar 

  • Shimokawa K, Azuma T, Sugiyama Y, Sangawa A, Kuwabara T, Okumura K, Kurosawa H, Miwa A (2003) Preliminary Report of Paleoseismological Study On The Kuromatsunai Lowland Fault Zone, Southwest Hokkaido, Northern Japan. American Geophysical Union, Fall Meeting 2003, abstract T12C-0489

  • Sieh K (2007) The Sunda Megathrust — past, present and future. J Earthq Tsunami 1:1–19

    Article  Google Scholar 

  • Simoes M, Chen YG, Shinde DP, Singhvi AK (2014) Lateral variations in the long-term slip rate of the Chelungpu fault, Central Taiwan, from the analysis of deformed fluvial terraces. J Geophys Res 119:3740–3766

    Article  Google Scholar 

  • Slemmons DB, McKinney R (1977) Definition of 'active fault. Miscellaneous Final report, S-77, 8 Army Engineer Waterways Experiment Station, Vicksburg, MS (USA) pp 24

  • Slemmons DB (1982) Determination of Design Earthquake Magnitudes for Microzonation. Proceedings of the 3rd International Earthquake Microzonation Conference, University of Washington, Seattle, WA (1982), pp. 119–130

  • Stander TW (1989) Structural Nature of the Humboldt Fault Zone in Northeastern Nemaha County, Kansas. In: Steeples DW (ed) Geophysics in Kansas, 117– 28, Kansas Geological Survey Bulletin 226

  • Steckler MS, Mondal DR, Akhter SH, Seeber L, Feng L, Gale J, Hill EM, Howe M (2016) Locked and loading megathrust linked to active subduction beneath the indo-Burman ranges. Nat Geosci 9:615–618

    Article  Google Scholar 

  • Stein Ross S, Barka Aykut A, Dieterich James H (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J Int 128(3):594–604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x

    Article  Google Scholar 

  • Stewart Meg E, Taylor Wanda J, Pearthree Philip A, Solomon Barry J, Hurlow Hugh A (1997) Neotectonics, fault segmentation, and seismic hazards along the Hurricane fault in Utah and Arizona. Brigham Young Univ Geol Stud 42:235–278

    Google Scholar 

  • Stirling MW, Wesnousky SG, Shimazaki K (1996) Fault trace complexity, cumulative slip, and the shape of the magnitude–frequency distribution for strike-slip faults: a global survey. Geophys J Int 124(3):833–868

    Article  Google Scholar 

  • Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81(6):941–950

    Article  Google Scholar 

  • Tamura T, Oohashi K, Otsubo M et al (2020) Contribution to crustal strain accumulation of minor faults: a case study across the Niigata-Kobe Tectonic Zone, Japan. Earth Planets Space 72:7. https://doi.org/10.1186/s40623-020-1132-5

    Article  Google Scholar 

  • Thingbaijam KKS, Martin Mai P, Goda K (2017) New empirical earthquake source-scaling laws. Bull Seism Soc Am 1075:2225–2246

    Article  Google Scholar 

  • Tiwari P, Maurya DM, Shaikh M, Patidar AK, Vanik N, Padmalal A, Vasaikar S, Chamyal LS (2021) Surface trace of the active Katrol Hill Fault and estimation of paleo-earthquake magnitude for seismic hazard, Western India. Eng Geol 295:106416. https://doi.org/10.1016/j.enggeo.2021.106416

    Article  Google Scholar 

  • Treiman JA (1999) Fault number 132, Imperial fault. In Quaternary fault and fold database of the United States: US Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults. Accessed 11 July 2021

  • Treiman JA (2000) Fault number 105e, Sierra Madre fault zone, Clamshell-Sawpit section. In Quaternary fault and fold database of the United States: US Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults. Accessed 09 July 2021

  • Trippetta F, Petricca P, Billi A, Collettini C, CufFRo M, Lombardi AM, Scrocca D, Ventura G, Morgante A, Doglioni C (2019) From mapped faults to fault-length earthquake magnitude FLEM: a test on Italy with methodological implications. Solid Earth 10:1555–1579

    Article  Google Scholar 

  • Tsutsumi H, Okada A (1996) Segmentation and Holocene surface faulting on the Median Tectonic Line, southwest Japan. J Geophys Res 101(B3):5855–5871

    Article  Google Scholar 

  • Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74:265–291

    Article  Google Scholar 

  • USGS (2022) The general location of the San Andreas fault and several other major faults in California. The United States Geological Survey, https://pubs.usgs.gov/gip/earthq3/where.html. Accessed 09 July 2021

  • USGS (2022a) Earthquakes. The United States Geological Survey, USGS Earthquake Hazards Program https://earthquake.usgs.gov/data/shakemap. Accessed 19 Mar 2022

  • Van Eck T, Goutbeek F, Haak H, Dost B (2006) Seismic hazard due to small-magnitude, shallow-source, induced earthquakes in the Netherlands. Eng Geol 87(1):105–121

    Google Scholar 

  • Villamor P, Litchfield N, Barrell D, Dissen R et al (2012) Map of the 2010 Greendale Fault surface rupture, Canterbury, New Zealand: application to land use planning. NZ J Geol Geophys 55(3):223–230

    Article  Google Scholar 

  • Wallace RE (1990) The San Andreas Fault System, California. U.S. Geological Survey, Report no: 1515, pp 304

  • Wang H, Wright TJ, Biggs J (2009) Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophys Res Lett 36(3):1–5

    Article  Google Scholar 

  • Wang JP, Lin CW, Taheri H, Chan WS (2012) Impact of fault parameter uncertainties on earthquake recurrence probability examined by Monte Carlo simulation—an example in Central Taiwan. Eng Geol 126:67–74

    Article  Google Scholar 

  • Wang Y, Sieh K, Tun ST, Lai KY, Myint T (2014) Active tectonics and earthquake potential of the Myanmar region. JGR Solid Earth 119:3767–3822

    Article  Google Scholar 

  • Wang W, Godard V, Zeng JL, Zhang J, Li Z et al (2021) Tectonic controls on surface erosion rates in the Longmen Shan Eastern Tibet. Tectonics 40:e2020TC006445. https://doi.org/10.1029/2020TC006445

    Article  Google Scholar 

  • Wang Y (2013) Earthquake Geology of Myanmar. Ph.D thesis, California Institute of Technology Pasadena, California

  • Washburn Z, Arrowsmith JR, Dupont-Nivet G, Xiao-Feng W, Qiao ZY, Zhengle C (2003) Paleoseismology of the Xorxol Segment of the Central Altyn Tagh Fault, Xinjiang, China. Ann Geophys 46(5):1015–1034

    Google Scholar 

  • Watkinson IM, Hall R (2016) Fault systems of the eastern Indonesian triple junction: evaluation of Quaternary activity and implications for seismic hazards. In: Cummins PR, Meilano I (eds) Geohazards in Indonesia: Earth Science for Disaster Risk Reduction. Geological Society 441:71–120

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Article  Google Scholar 

  • Wesling JR, Hanson KL (2008) Mapping of the West Napa fault zone for input into the northern California Quaternary fault database. Final Technical Report for USGS External Award Number 05HQAG0002Rep, pp 61

  • Wesnousky SG (1986) Earthquakes, quaternary faults, and seismic hazard in California. J Geophys Res 91(B12):12587–12631

    Article  Google Scholar 

  • Wesnousky SG (2006) Predicting the endpoints of earthquake ruptures. Nature 444:358–360

    Article  Google Scholar 

  • Wesnousky SG (2008) Displacement and geometrical characteristics of earthquake surface ruptures: issues and implications for seismic hazard analysis and the process of earthquake rupture. Bull Seismol Soc Am 98(4):1609–1632

    Article  Google Scholar 

  • Willis B (1923) A fault map of California. Seismol Soc Am Bull 13:1–12

    Article  Google Scholar 

  • Wood HO (1916) The earthquake problem in the western United States. Seismol Soc Am Bull 6:181–217

    Article  Google Scholar 

  • Wu-Lung C, Robert B (2002) Smith Integrated Seismic-Hazard Analysis of the Wasatch Front. Utah Bull Seismol Soc Am 92(5):1904–1922

    Article  Google Scholar 

  • Wyss M (1979) Estimating maximum expected magnitude of earthquakes from fault dimensions. Geology 7(7):336–340

    Article  Google Scholar 

  • Yıldırım C (2014) Relative tectonic activity assessment of the Tuz Gölü Fault Zone; Central Anatolia, Turkey. Tectonophysics 630:183–192

    Article  Google Scholar 

  • Yu ZY, Zhan PZ, Min W, Wei QH, Wang LM, Zhao B, Kang J (2015) Late Cenozoic deformation of the Da’an–Dedu Fault Zone and its implications for the earthquake activities in the Songliao Basin, NE China. J Asian Earth Sci 107:83–95

    Article  Google Scholar 

  • Zadeh MA, Ngah Designation IB, Alizadeh E, Shahabi H (2012) Application of Spatial Multi-Criteria Evaluation (SMCE) in Classification of earthquake hazard (Case study: Amol county). Int J Eng Res Technol 1:7

    Google Scholar 

  • Zhou RJ, Li Y, Densmore AL et al (2011) The strong motion records of the Ms 8.0 Wenchuan Earthquake by the digital strong earthquake network in Sichuan and the neighboring region. J Earthq Tsunami 5(4):343–361

    Article  Google Scholar 

  • Dal Zilio L, Jolivet R, Van Dinther Y (2020) Segmentation of the Main Himalayan Thrust illuminated by Bayesian inference of interseismic coupling. Geop Res Let 47:e2019GL086424. https://doi.org/10.1029/2019GL086424

    Article  Google Scholar 

  • Zygouri V, Verroios S, Kokkalas S, Xypolias P, Koukouvelas I (2008) Scaling properties within the Gulf of Corinth, Greece; comparison between offshore and onshore active faults. Tectonophysics 453:193–210

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions on the manuscript. Dr. Rosalie Constable contributed to the language and scientific editing of our manuscript. We are very grateful for her contributions.

Funding

This research received no specific grant from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Selçuk.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selçuk, L., Selçuk, A.S. FRS (Fault Rating System): a quantitative classification of active faults for hazard evaluations. Int J Earth Sci (Geol Rundsch) 113, 125–143 (2024). https://doi.org/10.1007/s00531-023-02360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02360-z

Keywords

Navigation