Skip to main content
Log in

Studies of Density Contrast of Cold Dark Matter in Cosmological Radiation and Dark Energy Background: A Symmetry-Based Approach

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the density contrast equations for cold dark matter (CDM) in the cosmological radiation and dark energy (DE) background. We provide a general prescription for the derivation of the aforesaid density contrast equations of the CDM using the metric perturbation technique. In particular, in the early radiation domination, the density contrast equation, the so-called Mészáros equation is derived, considering a four-fluid model, while on the other hand, in the late time DE domination, the “w-Mészáros equation” is derived, using the two-fluid system of CDM and DE. In the first case, we find eight-parameter Lie symmetries, while in the second case we also obtain eight symmetry generators of the “w-Mészáros equation,” each for the values of the equation-of-state parameter \(w=-2/3\) and \(-1\). Finding group-invariant solutions using the invariant curve condition for both cases, we have investigated the sub-horizon evolution of density contrasts of the CDM and provided a qualitative study on the nature of evolution of the CDM perturbations. The density contrast of CDM shows no growth during the radiation dominated era, but growth is seen just at the time of matter-radiation equality. The freezing or stagnation of the density contrast of the CDM prior to the matter-radiation equilibrium is due to the rapid expansion of the radiation background at early time, while the decay of the density contrast with increasing scale factor, which results in suppression in the growth of the inhomogeneity, is due to the DE dominated accelerated expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. S. Weinberg, Cosmology (Oxford University Press, NY, 2008).

    Book  MATH  Google Scholar 

  2. P. J. E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, New Jersey, 1980).

    MATH  Google Scholar 

  3. Measuring and Modeling the Universe (Ed. W. L. Freedman, Carnegie Observatories Astroph. Series, Vol. 2, Cambridge Univ. Press, 2004).

  4. S. Dodelson, Modern Cosmology (Academic Press, 2003).

    Google Scholar 

  5. A. Starobinskii, Phys. Lett. B 117, 175 (1982).

    Article  ADS  Google Scholar 

  6. V. A. Rubakov, arXiv: 1504.03587.

  7. P. Meszaros, Astron. Astrophys. 37, 225 (1974).

    ADS  Google Scholar 

  8. P. Meszaros, Astron. Astrophys. 38, 5 (1975).

    ADS  Google Scholar 

  9. P. Meszaros, Astrophys. J. 238, 781 (1980).

    Article  ADS  Google Scholar 

  10. S. Weinberg, Astrophys. J. 581, 810 (2002).

    Article  ADS  Google Scholar 

  11. C. G. Boehmer and G. Caldera-Cabral, arXiv: 1008.2852.

  12. E. J. Groth and P. J. E. Peebles, Astron. Astrophys. 41, 143 (1975).

    ADS  Google Scholar 

  13. W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996).

    Article  ADS  Google Scholar 

  14. E. M. Lifshitz, JETP 16, 987 (1946).

    Google Scholar 

  15. T. Padmanabhan, Structure Formation in the Universe (Cambridge University Press, New York, 1993).

    Google Scholar 

  16. O. F. Piattella, D. L. A. Martins, and L. Casarini, JCAP 10, 031 (2014).

  17. A. Tripathi, A. Sangwan and H. K. Jassal, JCAP 06, 012 (2017).

  18. Cosmological Crossroads (Eds. S. Cotsakis and E. Papantonopoulos, Springer, Berlin–Heidelberg–New York, 2002).

  19. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, NY, 1990).

    MATH  Google Scholar 

  20. A. Ganguly and A. Choudhuri, Grav. Cosmol. 28, 153 (2022).

    Article  ADS  Google Scholar 

  21. A. Choudhuri and A. Ganguly, Found. Phys. 1, 49 (2019).

    Google Scholar 

  22. Jose Carlos N. de Araujo, Astroparticle Phys. 23, 279 (2005).

    Google Scholar 

  23. M. Carmeli, Found. Phys. Lett. 19, 3 (2006).

    Article  Google Scholar 

  24. H. Stephani, Differential Equations: Their Solution Using Symmetries (CUP, Cambridge, 1990).

    Book  MATH  Google Scholar 

  25. G. W. Bluman and S. Kumei, Symmetries and Differential Equations (Springer, NY, 1989).

    Book  MATH  Google Scholar 

  26. P. E. Hydon, Symmetry Methods for Differential Equations (CUP, Cambridge, 2000).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Choudhuri.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, A., Choudhuri, A. Studies of Density Contrast of Cold Dark Matter in Cosmological Radiation and Dark Energy Background: A Symmetry-Based Approach. Gravit. Cosmol. 29, 419–431 (2023). https://doi.org/10.1134/S0202289323040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323040084

Navigation