Skip to main content
Log in

Phantom Dark Energy Nature of String-Fluid Cosmological Models in \(\boldsymbol{f(Q)}\)-Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The present investigation is focused on a curvatureless and torsionless modified nonmetricity theory of gravity in the context of string fluid. For that, we use an anisotropic, locally rotationally symmetric (LRS), Bianchi Type I space-time universe with the arbitrary function \(f(Q)=Q+\Lambda\), where \(Q\) is the nonmetricity scalar and \(\Lambda\) is the cosmological constant. We solve the field equations using a time-dependent deceleration parameter and obtain various cosmological parameters. To obtain the best-fit values of the model parameters, we use the observational constraints on Hubble function \(H(z)\) and the apparent magnitude \(m(z)\) using the observational datasets \(H(z)\) and SNe Ia. Using these values of model parameters, we investigate cosmological scenarios of the model. We observe the behavior of the variable dark energy equation of state (EoS) parameter \(\omega\) in the context of a string fluid universe and find the present value of the effective EoS parameter \(\omega^{\textrm{eff}}<-1\) that corresponds to phantom dark energy. Also, we analyze the statefinder parameters and estimate the present age of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. T. W. B. Kibble, “Topology of cosmic domains and strings,” J. Phys. A: Math. Gen. 9, 1387 (1976);

    Article  ADS  MATH  Google Scholar 

  2. T. W. B. Kibble, “Some implications of a cosmological phase transition,” Phys. Rep. 67, 183 (1980);

    Article  ADS  MathSciNet  Google Scholar 

  3. T. W. B. Kibble, “Topology of cosmic domains and strings,” J. Phys. A: Math. Gen. 9, 1387 (1976); T. W. B. Kibble, “Some implications of a cosmological phase transition,” Phys. Rep. 67, 183 (1980); T. W. B. Kibble and N. Tourk, “Self-intersection of cosmic strings,” Phys. Lett. B 116, 141 (1982).

    Article  ADS  Google Scholar 

  4. P. Mahanta and A. Mukharjee, “String models in Lyra geometry,” Indian J. Pure Appl. Math. 32, 199 (2001).

    MathSciNet  MATH  Google Scholar 

  5. A. Vilenkin et al., in: Three Hundred Years of Gravitation (Ed. S. Hawking and W. Israel, Cambridge University Press, Cambridge, 1987).

  6. J. Stachel, “Thickening the string. I. The string perfect dust,” Phys. Rev. D 21, 2171 (1980).

    Article  ADS  Google Scholar 

  7. R. Bhattacharjee and K. K. Baruah, “String cosmologies with a scalar field,” Indian J. Pure Appl. Math. 32, 47 (2001).

    MathSciNet  MATH  Google Scholar 

  8. P. S. Letelier, “String cosmologies,” Phys. Rev. D 28, 2414 (1983);

    Article  ADS  MathSciNet  Google Scholar 

  9. P. S. Letelier, “String cosmologies,” Phys. Rev. D 28, 2414 (1983); P. S. Letelier, “Clouds of strings in general relativity,” Phys. Rev. D 20, 1294 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  10. K. D. Krori, T. Chaudhuri, C. R. Mahanta, and A. Mazumdar, “Some exact solutions in string cosmology,” Gen. Rel. Grav. 22, 123 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. K. Yadav, A. Pradhan and S. K. Singh, “Some magnetized bulk viscous string cosmological models in general relativity,” Astrophys. Space Sci. 311, 145 (2007);

    Article  MATH  Google Scholar 

  12. A. Pradhan, A. Rai, and S. K. Singh, “Cylindrically symmetric inhomogeneous universe with electromagnetic field in string cosmology,” Astrophys. Space Sci. 312, 261 (2007);

    Article  ADS  MATH  Google Scholar 

  13. A. Pradhan, K. Jotania, and A. Singh, “Magnetized string cosmological model in cylindrically symmetric inhomogeneous universe with time dependent cosmological-term \(\Lambda\),” Braz. J. Phys., 38, 167 (2008);

  14. A. Pradhan and P. Mathur, “Magnetized string cosmological model in cylindrically symmetric inhomogeneous universe revisited,” Astrophys. Space Sci. 318, 255 (2008);

    Article  ADS  Google Scholar 

  15. A. Pradhan, “Some magnetized bulk viscous string cosmological models in cylindrically symmetric inhomogeneous universe with variable \(\Lambda\)-term,” Commun. Theor. Phys. 51, 367 (2009);

  16. A. Pradhan, S. Lata and H. Amirhashchi, “Massive string cosmology in Bianchi type-III space-time with electromagnetic field,” Commun. Theor. Phys. 54, 950 (2010);

    Article  ADS  MATH  Google Scholar 

  17. M. K. Yadav, A. Pradhan and S. K. Singh, “Some magnetized bulk viscous string cosmological models in general relativity,” Astrophys. Space Sci. 311, 145 (2007); A. Pradhan, A. Rai, and S. K. Singh, “Cylindrically symmetric inhomogeneous universe with electromagnetic field in string cosmology,” Astrophys. Space Sci. 312, 261 (2007); A. Pradhan, K. Jotania, and A. Singh, “Magnetized string cosmological model in cylindrically symmetric inhomogeneous universe with time dependent cosmological-term \(\Lambda\),” Braz. J. Phys., 38, 167 (2008); A. Pradhan and P. Mathur, “Magnetized string cosmological model in cylindrically symmetric inhomogeneous universe revisited,” Astrophys. Space Sci. 318, 255 (2008); A. Pradhan, “Some magnetized bulk viscous string cosmological models in cylindrically symmetric inhomogeneous universe with variable \(\Lambda\)-term,” Commun. Theor. Phys. 51, 367 (2009); A. Pradhan, S. Lata and H. Amirhashchi, “Massive string cosmology in Bianchi type-III space-time with electromagnetic field,” Commun. Theor. Phys. 54, 950 (2010); A. Pradhan, “Anisotropic Bianchi type-I magnetized string cosmological models with decaying vacuum energy density \(\Lambda\),” Commun. Theor. Phys. 55, 931 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. D. C. Maurya, R. Zia, and A. Pradhan, “Anisotropic string cosmological model in Brans-Dicke theory of gravitation with time-dependent deceleration parameter,” J. Exp. Theor. Phys. 123, 617 (2016).

    Article  ADS  Google Scholar 

  19. R. Zia, D. C. Maurya, and A. Pradhan, “Transit dark energy string cosmological models with perfect fluid in \(f(R,T)\)-gravity,” Int. J. Geom. Meth. Mod. Phys. 15, 1850168 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Perlmutter et al., “Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae,” Astrophys. J. 517, 565 (1999).

    Article  ADS  MATH  Google Scholar 

  21. A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astrphys. J. 116, 1009 (1998).

    Google Scholar 

  22. A. G. Riess et al., “Type-Ia supernova discoveries of \(z\geq 1\) from the Hubble space telescope: Evidence from past deceleration and constraints on dark energy evolution,” Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  23. D. N. Spergel et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters,” Astrophys. J. Suppl. Ser. 148, 175 (2003).

    Article  ADS  Google Scholar 

  24. T. Koivisto and D. F. Mota, “Dark energy anisotropic stress and large scale structure formation,” Phys. Rev. D 73, 083502 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. F. Daniel, “Large scale structure as a probe of gravitational slip,” Phys. Rev. D 77, 103513 (2008).

    Article  ADS  Google Scholar 

  26. S. Nadathur et al., “Testing low-redshift cosmic acceleration with large-scale structure,” Phys. Rev. Lett. 124, 221301 (2020).

    Article  ADS  Google Scholar 

  27. E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” Int. J. Geom. Methods Mod. Phys. 4, 115 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Tsujikawa, “Modified gravity models of dark energy,” Lect. Notes Phys. 800, 99 (2010).

    Book  MATH  Google Scholar 

  30. H. A. Buchdahl, “Non-linear Lagrangians and cosmological theory,” Mon. Not. R. Astron. Soc. 150, 1 (1970).

    Article  ADS  Google Scholar 

  31. J. D. Barrow and A. C. Ottewill, “The stability of general relativistic cosmological theory,” J. Phys. A: Math. Gen. 16, 2757 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Nojiri and S. D. Odintsov, “Modified \(f(R)\) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe,” Phys. Rev. D 74, 086005 (2006).

    Article  ADS  Google Scholar 

  33. E. Elizalde and D. Saez-Gomez, “\(f(R)\) cosmology in the presence of a phantom fluid and its scalar-tensor counterpart: Towards a unified precision model of the evolution of the Universe,” Phys. Rev. D 80, 044030 (2009).

    Article  ADS  Google Scholar 

  34. A. de la Cruz-Dombriz, A. Dobado, “\(f(R)\) gravity without a cosmological constant,” Phys. Rev. D 74, 087501 (2006).

    Article  ADS  Google Scholar 

  35. E. Schrödinger and E. Dinger, “Space-Time Structure,” Cambridge Science Classics (Cambridge University Press, 1985).

    Google Scholar 

  36. G. J. Olmo, “Palatini approach to modified gravity: \(f(R)\) theories and beyond,” Int. J. Mod. Phys. D 20, 413 (2011); arXiv: 1101.3864.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. L. Heisenberg, “A systematic approach to generalizations of General Relativity and their cosmological implications,” Phys. Rep. 796, 1 (2019), arXiv: 1807.01725.

  38. J. Beltran Jimenez, L. Heisenberg, and T. S. Koivisto, “The geometrical trinity of gravity,” Universe 5, 173 (2019); arXiv: 1903.06830.

  39. R. Aldrovandi and J. G. Pereira, Teleparallel Gravity, Vol. 173 (Springer, Dordrecht, 2013).

    Book  MATH  Google Scholar 

  40. J. Beltran Jimenez, L. Heisenberg, and T. Koivisto, “Coincident general relativity,” Phys. Rev. D 98, 044048 (2018), arXiv: 1710.03116.

  41. J. M. Nester and H. J. Yo, “Symmetric teleparallel general relativity,” Chin. J. Phys. 37, 113 (1999); arXiv: gr-qc/9809049.

    MathSciNet  Google Scholar 

  42. A. A. Starobinsky, “Disappearing cosmological constant in \(f(R)\) gravity,” JETP Lett. 86, 157 (2007); arXiv: 0706.2041.

    Article  ADS  Google Scholar 

  43. L. Amendola, K. Enqvist, and T. Koivisto, “Unifying Einstein and Palatini gravities,” Phys. Rev. D 83, 044016 (2011); arXiv: 1010.4776.

    Article  ADS  Google Scholar 

  44. S. Capozziello and M. De Laurentis, “Extended theories of gravity,” Phys. Rep. 509, 167 (2011); arXiv: 1108.6266.

    Article  ADS  MathSciNet  Google Scholar 

  45. R. Ferraro and F. Fiorini, “Modified teleparallel gravity: inflation without an inflaton,” Phys. Rev. D 75, 084031 (2007); arXiv: gr-qc/0610067.

    Article  ADS  MathSciNet  Google Scholar 

  46. R. Ferraro and F. Fiorini, “Non-trivial frames for \(f(T)\) theories of gravity and beyond,” Phys. Lett. B 702, 75 (2011); arXiv: 1103.0824.

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Hohmann, L. Jarv, M. Krssak, and C. Pfeifer, “Modified teleparallel theories of gravity in symmetric spacetimes,” Phys. Rev. D 100, 084002 (2019), arXiv: 1901.05472.

  48. S. Mandal et al., “Cosmography in \(f(Q)\) gravity,” Phys. Rev. D 102, 124029 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Mandal et al., “Energy conditions in \(f(Q)\) gravity,” Phys. Rev. D 102, 024057 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  50. W. Khyllep, A. Paliathanasis, and J. Dutta, “Cosmological solutions and growth index of matter perturbations in \(f(Q)\) gravity,” Phys. Rev. D 103, 103521 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  51. J. Beltran Jimenez, L. Heisenberg, T. S. Koivisto, and S. Pekar, “Cosmology in \(f(Q)\) geometry,” Phys. Rev. D 101, 103507 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  52. T. Harko et al., “Coupling matter in modified \(f(Q)\) gravity,” Phys. Rev. D 98, 084043 (2018). arXiv: 1806.10437.

  53. A. Banerjee et al., “Wormhole geometries in \(f(Q)\) gravity and the energy conditions,” Eur. Phys. J. C 81, 1031 (2021).

    Article  ADS  Google Scholar 

  54. S. H. Shekh et al., “Observational constraints in accelerated emergent \(f(Q)\) gravity model,” Class. Quantum Grav. 40, 055011 (2023).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. S. Gupta, A Dixit, and A. Pradhan, “Tsallis holographic dark energy scenario in viscous \(f(Q)\) gravity with tachyon field,” Int. J. Geom. Meth. Mod. Phys. 20, 2350021 (2023).

    Article  Google Scholar 

  56. A. Pradhan and A. Dixit, “The models of transit cosmology along with observational constriction in \(f(Q,T)\) gravity,” Int. J. Geom. Meth. Mod. Phys. 18, 2150159 (2021).

    Article  MathSciNet  Google Scholar 

  57. S. H. Shekh et al., “New emergent observational constraints in \(f(Q,T)\) gravity model,” J. High Energy Astrophys. 39, 53 (2023).

    Article  ADS  Google Scholar 

  58. S. Mandal, A. Singh, and R. Chaubey, “Cosmic evolution of holographic dark energy in \(f(Q,T)\) gravity,” Int. J. Geom. Meth. Mod. Phys. 20, 2350084 (2023).

    Article  MathSciNet  Google Scholar 

  59. R. Zia, D. C. Maurya, and A. K. Shukla, “Transit cosmological models in modified \(f(Q,T)\) gravity,” Int. J. Geom. Meth. Mod. Phys. 18, 2150051 (2021).

    Article  MathSciNet  Google Scholar 

  60. A. Pradhan, D. C. Maurya, and A. Dixit, “Dark energy nature of viscus universe in \(f(Q)\)-gravity with observational constraints,” Int. J. Geom. Meth. Mod. Phys. 18, 2150124 (2021).

    Article  Google Scholar 

  61. A. Dixit, D. C. Maurya, and A. Pradhan, “Phantom dark energy nature of bulk-viscosity universe in modified \(f(Q)\)-gravity,” Int. J. Geom. Meth. Mod. Phys. 19, 2250198 (2022).

    Article  MathSciNet  Google Scholar 

  62. A. Pradhan, A. Dixit, and D. C. Maurya, “Quintessence behavior of an anisotropic bulk viscous cosmological model in modified \(f(Q)\) gravity,” Symmetry 14, 2630 (2022).

    Article  ADS  Google Scholar 

  63. M. Koussour, S. H. Shekh, and M. Bennai, “Anisotropic \(f(Q)\) gravity model with bulk viscosity,” arXiv: 2203.10954.

  64. S. Capozziello and R. D’Agostino, “Model-independent reconstruction of \(f(Q)\) non-metric gravity,” Phys. Lett. B 832, 137229 (2022).

    Article  MATH  Google Scholar 

  65. D. C. Maurya, A. Dixit, and A. Pradhan, “Transit string dark energy models in \(f(Q)\) gravity,” Int. J. Geom. Meth. Mod. Phys. 20, 2350134 (2023).

    Article  MathSciNet  Google Scholar 

  66. P. Astier et al., “The supernova legacy survey: Measurement of \(\omega_{m}\), \(\omega_{\Lambda}\) and \(\omega\) from the first-year data set,” Astron. Astrophys. 447, 31 (2006).

    Article  ADS  Google Scholar 

  67. D. N. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology,” Astrophys. J. Suppl. Ser. 170, 377 (2007).

    Article  ADS  Google Scholar 

  68. A. G. Riess et al., “New Hubble space telscope discoveries of type Ia supernovae at \(z\geq 1\): narrowing constraints on the early behavior of dark energy,” Astrophys. J. 659, 98 (2007).

    Article  ADS  Google Scholar 

  69. S. M. Carrol and M. Hoffman, “Can the dark energy equation of state parameter \(\omega\) be less than \(-1\) ?,” Phys. Rev. D. 68, 023509 (2003).

    Article  ADS  Google Scholar 

  70. R. K. Knop et al., “New constraints on \(\Omega_{m}\), \(\Omega_{\Lambda}\) and \(\omega\) from an independent set of eleven high redshift supernovae observed with HST,” Astrphys. J. 598, 102 (2003).

    Article  ADS  Google Scholar 

  71. M. Tegmark et al., “The three-dimensional power spectrum of galaxies from the sloan digital sky survey,” Astrphys. J. 606, 702 (2004).

    Article  ADS  Google Scholar 

  72. G. Hinshaw et al., [WMAP Collaboration], “Five-year Wilkinson microwave anisotropy (WMAP) observation: Likelihoods and parameters from the WMAP data,” Astrphys. J. Suppl. Ser. 180, 306 (2009).

    Article  ADS  Google Scholar 

  73. E. Komatsu et al., “Five-year Wilkinson microwave anisotropy probe (WMAP) cosmological interpretation,” Astrphys. J. Suppl. Ser. 180, 330 (2009).

    Article  ADS  Google Scholar 

  74. J. Kujat et al., “Prospects for determining the equation of state of the dark energy: what can be learned from multiple observables?,” Astrophys. J. 572, 1 (2002).

    Article  ADS  Google Scholar 

  75. M. Bartelmann et al., “Evolution of dark matter haloes in a variety of dark energy cosmologies,” New Astron. Rev. 49, 199 (2005).

    Article  ADS  Google Scholar 

  76. R. Jimenez, “The value of the equation of state of dark energy,” New Astron. Rev. 47, 761 (2003).

    Article  ADS  Google Scholar 

  77. A. Das et al., “Cosmology with decaying tachyon matter,” Phys. Rev. D 72, 043528 (2005).

    Article  ADS  Google Scholar 

  78. M. S. Turner and M. White, “CDM models with a smooth component,” Phys. Rev. D 56, R4439 (1997).

    Article  ADS  Google Scholar 

  79. J. Beltran Jimenez, L. Heisenberg, and T. S. Koivisto, “Teleparallel Palatini theories,” JCAP 1808, 039 (2018), arXiv: 1803.10185.

  80. C. B. Collins, E. N. Glass, D. A. Wilkinson, “Exact Spatially Homogeneous Cosmologies,”” Gen. Rel. Grav. 12, 805 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. C. B. Collins and W. H. Stephen, “Why is the universe isotropic?,” Astroph. J. 180, 317 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  82. F. E. Bunn et al., “How anisotropic is our universe?,” Phys. Rev. Lett. 77, 2883 (1996).

    Article  ADS  Google Scholar 

  83. T. Harko and M. K. Mak., “Viscous Bianchi type I universes in brane cosmology,” Class. Quantum Grav. 20, 407 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. T. Harko and M. K. Mak., “Anisotropy in Bianchi-type brane cosmologies,” Class. Quantum Grav. 21, 1489 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. M. E. Rodrigues et al., “Locally rotationally symmetric Bianchi type-I cosmological model in \(f(T)\) gravity: from early to dark energy dominated universe,” Int. J. Mod. Phys. D 23, 1450004 (2014).

    Article  ADS  MATH  Google Scholar 

  86. C. Chawla, R.K. Mishra,. and A. Pradhan, “String cosmological models from early deceleration to current acceleration phase with varying \(G\) and \(\Lambda\),” Eur. Phys. J. Plus 127, 137 (2012).

    Article  Google Scholar 

  87. J. L. Tonry et al., “Cosmological results from high-z supernovae,” Astrophys. J. 594, 1 (2003).

    Article  ADS  Google Scholar 

  88. A. Clocchiatti, et al., “Hubble space telescope and ground-based observations of type Ia supernovae at redshift 0.5: cosmological implications,” Astrophys. J. 642, 1 (2006).

    Article  ADS  Google Scholar 

  89. C. L. Bennett, et al., “First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results,” Astrophys. J. Suppl. 148, 1 (2003).

    Article  ADS  Google Scholar 

  90. P. de Bernardis et al., “A flat Universe from high-resolution maps of the cosmic microwave background radiation,” Nature 404, 955 (2000).

    Article  ADS  Google Scholar 

  91. S. Hanany, et al., “MAXIMA-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10’-5,” Astrophys. J. 545, L5 (2000).

    Article  ADS  Google Scholar 

  92. T. Padmanabhan and T. Roychowdhury, “A theoretician’s analysis of the supernova data and the limitations in determining the nature of dark energy,” Mon. Not. R. Astron. Soc. 344, 823 (2003).

    Article  ADS  Google Scholar 

  93. L. Amendola, “Acceleration at \(z>1\)?,” Mon. Not. R. Astron. Soc. 342, 221 (2003).

    Article  ADS  Google Scholar 

  94. A. G. Riess et al., “The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration,” Astrophys. J. 560, 49 (2001).

    Article  ADS  Google Scholar 

  95. S. Agarwal, R. K. Pandey, and A. Pradhan, “LRS Bianchi type II perfect fluid cosmological models in normal gauge for Lyra’s manifold,” Int. J. Theor. Phys. 50, 296 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  96. A. Pradhan, S. Agarwal, and G. P. Singh, “LRS Bianchi type-I universe in Barber’s second self-creation theory,” Int. J. Theor. Phys. 48, 158 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  97. E. Macaulay, et al., “First cosmological results using Type Ia supernovae from the dark energy survey: measurement of the Hubble constant,” Mon. Not. R. Astron. Soc. 486, 2184 (2019).

    Article  ADS  Google Scholar 

  98. C. Zhang, et al., “Four new observational \(H(z)\) data from luminous red galaxies in the Sloan digital sky survey data release seven,” Res. Astron. Astrophys. 14, 1221 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  99. D. Stern, et al., “Cosmic chronometers: constraining the equation of state of dark energy. I: \(H(z)\) measurements,” J. Cosmol. Astropart. Phys. 1002, 008 (2010).

  100. E. G. Naga, et al., “Clustering of luminous red galaxies-IV: Baryon acoustic peak in the line-of-sight direction and a direct measurement of \(H(z)\),” Mon. Not. R. Astro. Soc. 399, 1663 (2009).

    Article  Google Scholar 

  101. D. H. Chauang and Y. Wang, “Modelling the anisotropic two-point galaxy correlation function on small scales and single-probe measurements of \(H(z)\), \(D_{A}(z)\) and \(f(z)\), \(\sigma_{8}(z)\) from the Sloan digital sky survey DR7 luminous red galaxies,” Mon. Not. R. Astro. Soc. 435, 255 (2013).

    Article  ADS  Google Scholar 

  102. S. Alam, et al., “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Mon. Not. R. Astron. Soc. 470, 2617 (2017).

    Article  ADS  Google Scholar 

  103. A. L. Ratsimbazafy, et al., “Age-dating luminous red galaxies observed with the Southern African Large Telescope,” Mon. Not. R. Astron. Soc. 467, 3239 (2017).

    Article  ADS  Google Scholar 

  104. L. Anderson, et al., “The clustering of galaxies in the SDSS-III Baryon oscillation Spectroscopic Survey: baryon acoustic oscillations in the data releases 10 and 11 galaxy samples,” Mon. Not. R. Astron. Soc. 441, 24 (2014).

    Article  ADS  Google Scholar 

  105. M. Moresco, “Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z \(\equiv\) 2,” Mon. Not. R. Astron. Soc. 450, L16 (2015).

    Article  ADS  Google Scholar 

  106. N. G. Busa et al., “Baryon acoustic oscillations in the Ly\(\alpha\) forest of BOSS quasars,” Astron. Astrophys. 552, A96 (2013).

    Article  Google Scholar 

  107. M. Moresco et al., “Improved constraints on the expansion rate of the Universe up to \(z\sim 1.1\) from the spectroscopic evolution of cosmic chronometers,” J. Cosmol. Astropart. Phys. 2012, 006 (2012).

  108. J. Simon, L. Verde, and R. Jimenez, “Constraints on the redshift dependence of the dark energy potential,” Phys. Rev. D 71, 123001 (2005).

    Article  ADS  Google Scholar 

  109. M. Moresco et al., “A 6 \(\%\) measurement of the Hubble parameter at z \(\sim 0.45\) direct evidence of the epoch of cosmic re-acceleration,” J. Cosmol. Astropart. Phys. 05, 014 (2016).

  110. G. F. R. Ellis and M. A. H. MacCallum, “A class of homogeneous cosmological models,” Commun. Math. Phys. 12, 108 (1969).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. E. J. Copeland et al., “Dynamics of dark energy,” Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. G. K. Goswami, R. N. Dewangan, and A. K. Yadav, “Anisotropic universe with magnetized dark energy,” Astrophys. Space Sci. 361, 119 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  113. G. K. Goswami, R. N. Dewangan, A. K. Yadav, and A. Pradhan, “Anisotropic string cosmological models in Heckmann-Schucking space-time,” Astrophys. Space Sci. 361, 47 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  114. A. K. Camlibel, I. Semiz and M. A. Feyizoglu, “Pantheon update on a model-independent analysis of cosmological supernova data,” Class. Quantum Grav. 37, 235001 (2020).

    Article  ADS  Google Scholar 

  115. D. M. Scolnic et al., “The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan\(-\)STARRS1 and cosmological constraints from the combined pantheon sample,” Astrophys. J. 859, 101 (2018).

    Article  ADS  Google Scholar 

  116. T. M. Davis et al., “Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes,” Astroph. J. 666, 716 (2007).

    Article  ADS  Google Scholar 

  117. P. Astier et al., “The Supernova Legacy Survey: measurement of \(H\) and \(w\) from the first year data set,” Astron. Astrophys. 447, 31 (2006).

    Article  ADS  Google Scholar 

  118. J. A. S. Lima, J.cF. Jesus, R. C. Santos, and M. S. S. Gill, “Is the transition redshift a new cosmological number?,” arXiv: 1205.4688.

  119. A. G. Riess et al., “The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration,” Astrophys. J. 560, 49 (2001).

    Article  ADS  Google Scholar 

  120. A. Piloyan, S. Pavluchenko, and L. Amendola, “Limits on the reconstruction of a single dark energy scalar field potential from SNe Ia Data,” Particles 1, 23 (2018).

    Article  Google Scholar 

  121. V. Sahni et al., “Statefinder — a new geometrical diagnostic of dark energy,” JETP Lett. 77, 201 (2003).

    Article  ADS  Google Scholar 

  122. U. Alam, et al., “Exploring the expanding universe and dark energy using the Statefinder diagnostic,” Mon. Not. R. Astron. Soc. 344, 1057 (2003).

    Article  ADS  Google Scholar 

  123. M. Sami et al., “Cosmological dynamics of a nonminimally coupled scalar field system and its late time cosmic relevance,” Phys. Rev. D 86, 103532 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is thankful to IUCAA Center for Astronomy Research and Development (ICARD), to CCASS, GLA University, Mathura, India for providing facilities and support where part of this work has been carried out. The author is thankful to the editor and reviewer for motivational and useful suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Chandra Maurya.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra Maurya, D. Phantom Dark Energy Nature of String-Fluid Cosmological Models in \(\boldsymbol{f(Q)}\)-Gravity. Gravit. Cosmol. 29, 345–361 (2023). https://doi.org/10.1134/S0202289323040151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323040151

Navigation