Skip to main content
Log in

Large animal models to study effectiveness of therapy devices in the treatment of heart failure with preserved ejection fraction (HFpEF)

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Our understanding of the complex pathophysiology of Heart failure with preserved ejection fraction (HFpEF) is limited by the lack of a robust in vivo model. Existing in-vivo models attempt to reproduce the four main phenotypes of HFpEF; ageing, obesity, diabetes mellitus and hypertension. To date, there is no in vivo model that represents all the haemodynamic characteristics of HFpEF, and only a few have proven to be reliable for the preclinical evaluation of potentially new therapeutic targets. HFpEF accounts for 50% of all the heart failure cases and its incidence is on the rise, posing a huge economic burden on the health system. Patients with HFpEF have limited therapeutic options available. The inadequate effectiveness of current pharmaceutical therapeutics for HFpEF has prompted the development of device-based treatments that target the hemodynamic changes to reduce the symptoms of HFpEF. However, despite the potential of device-based solutions to treat HFpEF, most of these therapies are still in the developmental stage and a relevant HFpEF in vivo model will surely expedite their development process. This review article outlines the major limitations of the current large in-vivo models in use while discussing how these designs have helped in the development of therapy devices for the treatment of HFpEF.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

cGMP:

Cyclic guanosine monophosphate

DOCA:

Deoxy-corticosterone acetate

EF:

Ejection fraction

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

IASD:

Interatrial shunt device

LAAD:

Left atrial assist device

LA:

Left atrium

LAP:

Left atrial pressure

LV:

Left ventricular

LVADs:

Left ventricular assist devices

LVDD:

Left ventricular diastolic dysfunction

LVEDP:

Left ventricular end-diastolic pressure

LVH:

Left ventricular hypertrophy

LVPO:

Left ventricular pressure-overload

MCS:

Mechanical circulatory support

NHP:

Non-human primate

RVHT:

Renovascular hypertension

SGLT2:

Sodium-glucose cotransporter-2

TTE:

Transthoracic echocardiography

References

  1. National Heart LaBI (2021) Cardiovascular disease is on the rise, but we know how to curb it. We’ve done it before. Available from https://www.nhlbi.nih.gov/news/2021/cardiovascular-disease-rise-we-know-how-curb-it-weve-done-it

  2. Barry A Borlaug WSC (2022) Treatment and prognosis of heart failure with preserved ejection fraction. UpToDate

  3. Gevaert AB, Boen JRA, Segers VF, Van Craenenbroeck EM (2019) Heart failure with preserved ejection fraction: a review of cardiac and noncardiac pathophysiology. Front Physiol 10:638

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gazewood JD, Turner PL (2017) Heart failure with preserved ejection fraction: diagnosis and management. Am Fam Physician 96(9):582–588

    PubMed  Google Scholar 

  5. Oktay AA, Rich JD, Shah SJ (2013) The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep 10(4):401–410

    Article  PubMed  Google Scholar 

  6. Tromp J, Shen L, Jhund PS, Anand IS, Carson PE, Desai AS et al (2019) Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J Am Coll Cardiol 74(5):601–612

    Article  PubMed  Google Scholar 

  7. Guazzi M, Ghio S, Adir Y (2020) Pulmonary hypertension in HFpEF and HFrEF: JACC review topic of the week. J Am Coll Cardiol 76(9):1102–1111

    Article  PubMed  Google Scholar 

  8. Clinic M (2015) Heart failure with preserved ejection fraction (HFpEF): more than diastolic dysfunction. Available from https://www.mayoclinic.org/medical-professionals/cardiovascular-diseases/news/heart-failure-with-preserved-ejection-fraction-hfpef-more-than-diastolic-dysfunction/mac-20430055

  9. Guazzi M (2014) Pulmonary hypertension in heart failure preserved ejection fraction: prevalence, pathophysiology, and clinical perspectives. Circ Heart Fail 7(2):367–377

    Article  PubMed  Google Scholar 

  10. Zamfirescu MB, Ghilencea LN, Popescu MR, Bejan GC, Maher SM, Popescu AC, Dorobanțu M (2021) The E/e’Ratio—role in risk stratification of acute heart failure with preserved ejection fraction. Medicina 57(4):375

    Article  PubMed  PubMed Central  Google Scholar 

  11. Conceição G, Heinonen I, Lourenço AP, Duncker DJ, Falcão-Pires I (2016) Animal models of heart failure with preserved ejection fraction. Neth Heart J 24(4):275–286

    Article  PubMed  PubMed Central  Google Scholar 

  12. Charles CJ, Rademaker MT, Scott NJ, Richards AM (2020) Large animal models of heart failure: reduced vs. preserved ejection fraction. Animals 10(10):1906

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miyagi C, Miyamoto T, Kuroda T, Karimov JH, Starling RC, Fukamachi K (2022) Large animal models of heart failure with preserved ejection fraction. Heart Fail Rev 27(2):595–608

    Article  PubMed  Google Scholar 

  14. Sharp TE 3rd, Scarborough AL, Li Z, Polhemus DJ, Hidalgo HA, Schumacher JD et al (2021) Novel Göttingen miniswine model of heart failure with preserved ejection fraction integrating multiple comorbidities. JACC Basic Transl Sci 6(2):154–170

    Article  PubMed  PubMed Central  Google Scholar 

  15. Charles CJ, Lee P, Li RR, Yeung T, Ibraham Mazlan SM, Tay ZW et al (2020) A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Heart Fail 7(1):92–102

    PubMed  Google Scholar 

  16. Li H, Xia YY, Xia CL, Li Z, Shi Y, Li XB et al (2022) Mimicking metabolic disturbance in establishing animal models of heart failure with preserved ejection fraction. Front Physiol 13:879214

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Ham WB, Kessler EL, Oerlemans MI, Handoko ML, Sluijter JP, van Veen TA, den Ruijter HM, de Jager SC (2022) Clinical phenotypes of heart failure with preserved ejection fraction to select preclinical animal models. Basic Transl Sci 7(8):844–857

    Google Scholar 

  18. Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C et al (2019) Western diet-fed, aortic-banded Ossabaw swine: a preclinical model of cardio-metabolic heart failure. JACC Basic Transl Sci 4(3):404–421

    Article  PubMed  PubMed Central  Google Scholar 

  19. Silva KAS, Emter CA (2020) Large animal models of heart failure: a translational bridge to clinical success. JACC Basic Transl Sci 5(8):840–856

    Article  PubMed  PubMed Central  Google Scholar 

  20. Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH (2016) Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc 5(1):e002477

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sasayama S, Ross J Jr, Franklin D, Bloor CM, Bishop S, Dilley RB (1976) Adaptations of the left ventricle to chronic pressure overload. Circ Res 38(3):172–178

    Article  CAS  PubMed  Google Scholar 

  22. Koide M, Nagatsu M, Zile MR, Hamawaki M, Swindle MM, Keech G et al (1997) Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine. Circulation 95(6):1601–1610

    Article  CAS  PubMed  Google Scholar 

  23. Fujii AM, Aoyagi T, Flanagan MF, Takahashi T, Bennett-Guerrero E, Colan SD et al (1993) Response of the hypertrophied left ventricle to tachycardia: importance of maturation. Am J Physiol 264(3 Pt 2):H983–H993

    CAS  PubMed  Google Scholar 

  24. Ye Y, Gong G, Ochiai K, Liu J, Zhang J (2001) High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation 103(11):1570–1576

    Article  CAS  PubMed  Google Scholar 

  25. Gelpi RJ, Park M, Gao S, Dhar S, Vatner DE, Vatner SF (2011) Apoptosis in severe, compensated pressure overload predominates in nonmyocytes and is related to the hypertrophy but not function. Am J Physiol Heart Circ Physiol 300(3):H1062–H1068

    Article  CAS  PubMed  Google Scholar 

  26. Song LS, Pi Y, Kim SJ, Yatani A, Guatimosim S, Kudej RK et al (2005) Paradoxical cellular Ca2+ signaling in severe but compensated canine left ventricular hypertrophy. Circ Res 97(5):457–464

    Article  CAS  PubMed  Google Scholar 

  27. Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M (2010) Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med 60(4):300–315

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bikou O, Watanabe S, Hajjar RJ, Ishikawa K (2018) A pig model of myocardial infarction: catheter-based approaches. Methods Mol Biol 1816:281–294

    Article  CAS  PubMed  Google Scholar 

  29. Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA et al (2012) Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J Thorac Cardiovasc Surg 143(1):215–223

    Article  PubMed  Google Scholar 

  30. Emter CA, Tharp DL, Ivey JR, Ganjam VK, Bowles DK (2011) Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy. Am J Physiol Heart Circ Physiol 301(4):H1687–H1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Emter CA, Baines CP (2010) Low-intensity aerobic interval training attenuates pathological left ventricular remodeling and mitochondrial dysfunction in aortic-banded miniature swine. Am J Physiol Heart Circ Physiol 299(5):H1348–H1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wallner M, Eaton DM, Berretta RM, Borghetti G, Wu J, Baker ST et al (2017) A feline HFpEF model with pulmonary hypertension and compromised pulmonary function. Sci Rep 7(1):16587

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Zhen N, Loo SJ, Su LP, Tao ZH, Gui F, Luo JH et al (2021) A diastolic dysfunction model in non-human primates with transverse aortic constriction. Exp Anim 70(4):498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gyöngyösi M, Pavo N, Lukovic D, Zlabinger K, Spannbauer A, Traxler D et al (2017) Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension. J Transl Med 15(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  35. Munagala VK, Hart CY, Burnett JC Jr, Meyer DM, Redfield MM (2005) Ventricular structure and function in aged dogs with renal hypertension: a model of experimental diastolic heart failure. Circulation 111(9):1128–1135

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hamdani N, Bishu KG, von Frieling-Salewsky M, Redfield MM, Linke WA (2013) Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovasc Res 97(3):464–471

    Article  CAS  PubMed  Google Scholar 

  37. Borlaug BA, Carter RE, Melenovsky V, DeSimone CV, Gaba P, Killu A et al (2017) Percutaneous pericardial resection: a novel potential treatment for heart failure with preserved ejection fraction. Circ Heart Fail 10(4):e003612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nachar W, Merlet N, Maafi F, Shi Y, Mihalache-Avram T, Mecteau M et al (2019) Cardiac inflammation and diastolic dysfunction in hypercholesterolemic rabbits. PLoS ONE 14(8):e0220707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van den Dorpel MMP, Heinonen I, Snelder SM, Vos HJ, Sorop O, van Domburg RT et al (2018) Early detection of left ventricular diastolic dysfunction using conventional and speckle tracking echocardiography in a large animal model of metabolic dysfunction. Int J Cardiovasc Imaging 34(5):743–749

    PubMed  Google Scholar 

  40. Qian C, Gong L, Yang Z, Chen W, Chen Y, Xu Z et al (2015) Diastolic dysfunction in spontaneous type 2 diabetes rhesus monkeys: a study using echocardiography and magnetic resonance imaging. BMC Cardiovasc Disord 15:59

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shapiro BP, Owan TE, Mohammed S, Kruger M, Linke WA, Burnett JC Jr et al (2008) Mineralocorticoid signaling in transition to heart failure with normal ejection fraction. Hypertension 51(2):289–295

    Article  CAS  PubMed  Google Scholar 

  42. Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN et al (2018) Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res 114(7):954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwarzl M, Hamdani N, Seiler S, Alogna A, Manninger M, Reilly S et al (2015) A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 309(9):H1407–H1418

    Article  CAS  PubMed  Google Scholar 

  44. Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R et al (2020) Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute working group summary. Circulation 141(12):1001–1026

    Article  PubMed  PubMed Central  Google Scholar 

  45. van de Wouw J, Steenhorst JJ, Sorop O, van Drie RWA, Wielopolski PA, Kleinjan A et al (2021) Impaired pulmonary vasomotor control in exercising swine with multiple comorbidities. Basic Res Cardiol 116(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miyagi C, Miyamoto T, Karimov JH, Starling RC, Fukamachi K (2021) Device-based treatment options for heart failure with preserved ejection fraction. Heart Fail Rev 26(4):749–762

    Article  PubMed  Google Scholar 

  47. Rosalia L, Ozturk C, Shoar S, Fan Y, Malone G, Cheema FH et al (2021) Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction. JACC Basic Transl Sci 6(9–10):772–795

    Article  PubMed  PubMed Central  Google Scholar 

  48. Burlacu A, Simion P, Nistor I, Covic A, Tinica G (2019) Novel percutaneous interventional therapies in heart failure with preserved ejection fraction: an integrative review. Heart Fail Rev 24(5):793–803

    Article  PubMed  Google Scholar 

  49. Wintrich J, Kindermann I, Ukena C, Selejan S, Werner C, Maack C et al (2020) Therapeutic approaches in heart failure with preserved ejection fraction: past, present, and future. Clin Res Cardiol 109(9):1079–1098

    Article  PubMed  PubMed Central  Google Scholar 

  50. Del Buono MG, Iannaccone G, Scacciavillani R, Carbone S, Camilli M, Niccoli G et al (2020) Heart failure with preserved ejection fraction diagnosis and treatment: an updated review of the evidence. Prog Cardiovasc Dis 63(5):570–584

    Article  PubMed  Google Scholar 

  51. Sun W, Zou H, Yong Y, Liu B, Zhang H, Lu J et al (2022) The RAISE trial: a novel device and first-in-man trial. Circ Heart Fail 15(4):e008362

    Article  CAS  PubMed  Google Scholar 

  52. Nishikawa T, Saku K, Uike K, Uemura K, Sunagawa G, Tohyama T et al (2020) Prediction of haemodynamics after interatrial shunt for heart failure using the generalized circulatory equilibrium. ESC Heart Fail 7(5):3075–3085

    Article  PubMed  PubMed Central  Google Scholar 

  53. Feld Y, Reisner Y, Meyer-Brodnitz G, Hoefler R (2023) The CORolla device for energy transfer from systole to diastole: a novel treatment for heart failure with preserved ejection fraction. Heart Fail Rev 28(2):307–314

    PubMed  Google Scholar 

  54. Silverman DN, Shah SJ (2019) Treatment of heart failure with preserved ejection fraction (HFpEF): the phenotype-guided approach. Curr Treat Options Cardiovasc Med 21(4):20

    Article  PubMed  Google Scholar 

  55. Ning B, Zhang F, Song X, Hao Q, Li Y, Li R et al (2020) Cardiac contractility modulation attenuates structural and electrical remodeling in a chronic heart failure rabbit model. J Int Med Res 48(10):030006052096291

    Article  Google Scholar 

  56. Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R et al (2007) Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension 50(5):904–910

    Article  CAS  PubMed  Google Scholar 

  57. Schüttler D, Bapat A, Kääb S, Lee K, Tomsits P, Clauss S et al (2020) Animal models of atrial fibrillation. Circ Res 127(1):91–110

    Article  PubMed  Google Scholar 

  58. Snyder T, Cornat F, Jem N, Pruvost R, Benoit S, Monticone E et al (2022) CARD19: In vitro and in vivo testing of the pulsatile CorWave membrane LVAD. ASAIO J 68(Supplement 2):54

    Article  Google Scholar 

  59. Miyagi C, Kuban BD, Flick CR, Polakowski AR, Miyamoto T, Karimov JH, Starling RC, Fukamachi K (2023) Left atrial assist device for heart failure with preserved ejection fraction: initial results with torque control mode in diastolic heart failure model. Heart Fail Rev 28(2):287–296

    PubMed  Google Scholar 

  60. Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F (2022) Heart failure with preserved ejection fraction: heterogeneous syndrome, diverse preclinical models. Circ Res 130(12):1906–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lourenço AP, Leite-Moreira AF, Balligand J-L, Bauersachs J, Dawson D, De Boer RA et al (2018) An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur J Heart Fail 20(2):216–227

    Article  PubMed  Google Scholar 

  62. Malone A, Gallagher S, Saidi J, Rizq G, O’Dowd E, Vallence D, Hameed A (2022) In vitro benchtop mock circulatory loop for heart failure with preserved ejection fraction emulation. Front Cardiovasc Med 9:910120

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr Aamir Hameed would like to acknowledge Enterprise Ireland for their support through their Commercialisation Fund (CF-2019-1136-P). This funding supports the development of a novel device-based solution for HFpEF. This work has been carried out at the RCSI University of Medicine and Health Sciences.

Author information

Authors and Affiliations

Authors

Contributions

AH conceived the study design. SMF, AM, ZR and TA wrote the first manuscript draft. FHC, AM, BH, NA, JS, MA and JO’N critically reviewed the manuscript drafts. All authors reviewed and approved the final manuscript. AH and JO’N are the co-senior and co-corresponding authors.

Corresponding authors

Correspondence to Jim O’Neill or Aamir Hameed.

Ethics declarations

Competing interests

Aamir Hameed (CMO), Andrew Malone (CSO) and Faisal H. Cheema (Non-Executive Director) are associated with a Startup, an RCSI and Tissue Engineering Research Group (TERG) spinout, Pumpinheart Ltd., which is developing a novel device for HFpEF. Jim O'Neill is on the advisory board of Pumpinheart Ltd. The rest of the authors do not have any known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Heart failure with preserved ejection fraction (HFpEF) continues to plague the elderly population and those with pre-existing comorbidities, exorbitantly contributing towards the increasing cardiovascular disease burden within this population.

• However, animal models for studying HFpEF remain scarce due, in large part, to the complex interplay of pathophysiology and co-existing comorbidities, rendering it mechanistically difficult to curate optimal models.

• Additionally, translating HFpEF phenotypes into animal models remains a complicated process since both the developing triggers and the diagnostic approaches vary between humans and animals.

• The present review paper comprehensively evaluates novel models, such as the left ventricular apex balloon insertion and progressive LVPO models, which have both significantly contributed to the development of a more robust and reliable HFpEF model.

• Further research on large animal models is warranted to truly elucidate their utility in therapy device development.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, S.M., Murally, A.R., Rajabally, Z. et al. Large animal models to study effectiveness of therapy devices in the treatment of heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev 29, 257–276 (2024). https://doi.org/10.1007/s10741-023-10371-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10371-w

Keywords

Navigation