Skip to main content
Log in

Self-Assembly Behavior and Cytotoxicity of PEG-b-PLA Nanoparticles for Improved Oxaliplatin Delivery: Effect of PLA Block Length

  • SHORT COMMUNICATION
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

The present study investigates the effect of the length of the hydrophobic poly(D,L-lactide) block on the self-assembly behavior of amphiphilic poly(D,L-lactide)-b-poly(ethylene glycol) (P(D,L)LA-b-PEG5k) copolymers with a large variation in molecular weight of the hydrophobic block (ranging from 5 to 100 kDa). To evaluate the cytotoxic effect of oxaliplatin-loaded P(D,L)LA-b-PEG5k nanoparticles (OXA-NPs) prepared by the nanoprecipitation method, a half maximal inhibitory concentration (IC50) study was conducted in cancer cell lines (MCF7, HCT116, and A549). The assays revealed that the IC50 values for OXA-NPs in HCT116 (1.93 ± 0.08 nM) and A549 (2.84 ± 0.11 nM) were significantly lower than those of pure OXA (12.70 ± 1.14 and 29.30 ± 0.40 nM, respectively). Moreover, the results showed that normal fibroblasts treated with blank NPs exhibited no significant growth inhibition in the concentration range of 0.001–1 mg mL–1, indicating their high biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4

REFERENCES

  1. Kang, H., Rho, S., Stiles, W.R., Hu, S., Baek, Y., Hwang, D.W., Kashiwagi, S., Kim, M.S., and Choi, H.S., Adv. Healthcare Mater., 2020, vol. 9, no. 1, p. e1901223. https://doi.org/10.1002/adhm.201901223

  2. Graham, M.A., Lockwood, G.F., Greenslade, D., Brienza, S., Bayssas, M., and Gamelin, E., Clin. Cancer Res., 2000, vol. 6, no. 4, p. 1205.

    CAS  PubMed  Google Scholar 

  3. Garcia-Pinel, B., Jabalera, Y., Ortiz, R., Cabeza, L., Jimenez-Lopez, C., Melguizo, C., and Prados, J., Pharmaceutics, 2020, vol. 12, no. 6, p. 589. https://doi.org/10.3390/pharmaceutics12060589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cabral, H., Miyata, K., Osada, K., and Kataoka, K., Chem. Rev., 2018, vol. 118, no. 14, p. 6844. https://doi.org/10.1021/acs.chemrev.8b00199

    Article  CAS  PubMed  Google Scholar 

  5. Govender, T., Riley, T., Ehtezazi, T., Garnett, M.S., Stolnik, S., Illum, L., and Davis, S.S., Int. J. Pharm., 2000, vol. 199, no. 1, p. 95. https://doi.org/10.1016/S0378-5173(00)00375-6

    Article  CAS  PubMed  Google Scholar 

  6. Simonutti, R., Bertani, D., Marotta, R., Ferrario, S., Manzone, D., Mauri, M., Gregori, M., Orlando, A., and Masserini, M., Polymer, 2021, vol. 218, p. 123511. https://doi.org/10.1016/j.polymer.2021.123511

  7. Kadina, Y.A., Razuvaeva, E.V., Streltsov, D.R., Sedush, N.G., Shtykova, E.V., Kulebyakina, A.I., Puchkov, A.A., Volkov, D.S., Nazarov, A.A., and Chvalun, S.N., Molecules, 2021, vol. 26, no. 3, p. 602. https://doi.org/10.3390/molecules26030602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Allaf, T.A., Rashan, L.J., Ketler, G., Fiebig, H., and Al-Dujaili, A.H., Appl. Organomet. Chem., 2009, vol. 23, p. 173. https://doi.org/10.1002/aoc.1489

    Article  CAS  Google Scholar 

  9. Maeda, H., J. Pers. Med., 2021, vol. 11, no. 3, p. 229. https://doi.org/10.3390/jpm11030229

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., Terada, Y., Kano, M.R., Miyazono, K., Uesaka, M., Nishiyama, N., and Kataoka, K., Nat. Nanotechnol., 2011, vol. 6, no. 12, p. 815. https://doi.org/10.1038/nnano.2011.166

    Article  CAS  PubMed  Google Scholar 

  11. Garofalo, C., Capuano, G., Sottile, R., Tallerico, R., Adami, R., Reverchon, E., Carbone, E., Izzo, L., and Pappalardo, D., Biomacromolecules, 2014, vol. 15, no. 1, p. 403. https://doi.org/10.1021/bm401812r

    Article  CAS  PubMed  Google Scholar 

  12. Patil, S., Sandberg, A., Heckert, E., Self, W., and Seal, S., Biomaterials, 2007, vol. 28, no. 31, p. 4600. https://doi.org/10.1016/j.biomaterials.2007.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phan, H., Minut, R.I., McCrorie, P., Vasey, C., Larder, R.R., Krumins, E., Marlow, M., Rahman, R., Alexander, C., Taresco, V., and Pearce, A.K., J. Polym. Sci., Part A: Polym. Chem., 2019, vol. 57, no. 17, p. 1801. https://doi.org/10.1002/pola.29451

    Article  CAS  Google Scholar 

  14. Glova, A.D., Melnikova, S.D., Mercurieva, A.A., Larin, S.V., and Lyulin, S.V., Polymers, 2019, vol. 11, p. 2056. https://doi.org/10.3390/polym11122056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glova, A.D., Falkovich, S.G., Dmitrienko, D.I., Lyulin, A.V., Larin, S.V., Nazarychev, V.M., Karttunen, M., and Lyulin, S.V., Macromolecules, 2018, vol. 51, p. 552. https://doi.org/10.1021/acs.macromol.7b01640

    Article  CAS  Google Scholar 

  16. Iakimov, N.P., Zotkin, M.A., Dets, E.A., Abramchuk, S.S., Arutyunian, A.M., Grozdova, I.D., and Melik-Nubarov, N.S., Colloid Polym. Sci., 2021, vol. 299, p. 1543. https://doi.org/10.1007/s00396-021-04853-2

  17. Liu, L.Yu., Seitsonen, J., Xu, W., and Lehto, V.-S., Chem.—Eur. J., 2022, vol. 28, p. e202200947.

  18. Shutkov, I.A. and Okulova, Y.N., Int. J. Mol. Sci., 2021, vol. 22, no. 24, p. 13468. https://doi.org/10.3390/ijms222413468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

TEM and DLS measurements were performed in Resource Centers of the National Research Center “Kurchatov Institute.”

Funding

The research was supported by the Russian Science Foundation (project no. 18-73-10079-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Puchkova or N. Sedush.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchkova, Y., Sedush, N., Kuznetsova, E. et al. Self-Assembly Behavior and Cytotoxicity of PEG-b-PLA Nanoparticles for Improved Oxaliplatin Delivery: Effect of PLA Block Length. rev. and adv. in chem. 13, 152–159 (2023). https://doi.org/10.1134/S2634827623600056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623600056

Keywords:

Navigation