Skip to main content
Log in

Surface Modification of Multiwalled Carbon Nanotubes to Impart Technological Properties

  • SHORT COMMUNICATION
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

The work considers the processes of modifying the surface of multiwalled carbon nanotubes with various polar groups: carboxyl, alcoholic hydroxyl, and quaternary ammonium salt. A procedure is developed using an oxidizing mixture of hydrogen peroxide, nitric acid, and sulfuric acid for the carboxylation of carbon nanotubes at a temperature of 70°C, which minimizes the formation of amorphous carbon and increases the concentration of carboxyl groups on the surface to 5.5 wt %. Tubes with a surface modified with a quaternary ammonium salt are obtained from carboxylated carbon nanotubes by reaction with triethanolamine. The modification of carbon nanotubes with ethyl hydroxyl groups is carried out with the participation of a free-radical initiator in an ethanol medium. The initial defects of nanotubes determine the number and nature of the defects at which chemical bonding occurs during functionalization, regardless of the method of nanocarbon material processing. The thermal–oxidative stability of the initial and modified carbon nanotubes in air is explored. The initial nanotubes are the most stable; they maintain their properties even when heated up to 520°C in air. For modified nanotubes, the thermal stability decreases in the series multiwalled nanotubes with carboxyl groups on the surface, multiwalled nanotubes with alcoholic hydroxyl groups, and multiwalled nanotubes modified with a quaternary ammonium salt, the oxidation of which begins at 400°C. The grafting of alcohol hydroxyl groups onto the surface of multiwalled carbon nanotubes is of considerable interest for obtaining an adsorption material with a developed surface, capable of covalently binding metal ions due to hydroxyl groups, similarly to complexing agents such as ethylene glycol or pyrocatechol. Carbon nanomaterials modified with polar groups exhibit good adsorption properties with respect to heavy metal ions. The degree of extraction of zinc and copper ions in the case of carboxylated nanotubes reaches 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Bolotov, V.V., Knyazev, E.V., Korusenko, P.M., Nesov, S.N., and Sachkov, V.A., Phys. Solid State, 2020, vol. 62, p. 2173.

    Article  CAS  Google Scholar 

  2. D’yachkova, T.P. and Tkachev, A.G., Metody funktsionalizatsii i modifitsirovaniya uglerodnykh nanotrubok (Functionalization and Modification of Carbon Nanotubes), Moscow: Spektr, 2013.

  3. Danilchenko, B.A., Voitsihovska, E.A., Rogutski, I.S., Rudenko, R.M., Uvarova, I.Y., and Yaskovets, I.I., Diamond Relat. Mater., 2017, vol. 80, p. 113.

    Article  CAS  Google Scholar 

  4. Usanov, D.A., Skripal’, A.V., and Romanov, A.V., Tech. Phys., 2014, vol. 59, p. 873.

    Article  CAS  Google Scholar 

  5. Mazov, I., Kuznetsov, V.L., Simonova, I.A., Stadnichenko, A.I., Ishchenko, A.V., Romanenko, A.I., Tkachev, E.N., and Anikeeva, O.B., Appl. Surf. Sci., 2012, vol. 258, p. 6272.

    Article  CAS  Google Scholar 

  6. Xu, Z., Xu, L., Fang, F., and Gao, H., Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 307, p. 203.

    CAS  Google Scholar 

  7. Laing, N.N., Ginzgeimer, S.A., Belov, Yu.S., Tin Ko Ko Vin, Proskurnin, A.N., and Loginov, B.M., Naukoemk. Tekhnol., 2011, vol. 12, p. 45.

    Google Scholar 

  8. Kotsilkova, R., Petrova-Doycheva, I., Menseidov, D., Ivanov, E., Paddubskaya, A., and Kuzhir, P., Compos. Sci. Technol., 2019, vol. 181, p. 107712.

  9. Tolvanen, A., Buchs, G., Ruffieux, P., Groening, P., Groening, O., and Krasheninnikov, A.V., Phys. Rev. B, 2009, vol. 79, p. 125430.

  10. Hongcun, B., Ma, Y., Ma, J., Mei, J., Tong, Y., and Ji, Y., J. Phys.: Conf. Ser., 2017, vol. 864, p. 012030.

  11. Bolotov, V.V., Ivlev, K.E., Kan, V.E., Knyazev, E.V., Makushenko, R.K., and Sachkov, V.A., AIP Conf. Proc., 2020, vol. 2285, p. 040009.

  12. Liang, S., Li, G., and Tian, R., J. Mater. Sci., 2016, vol. 51, no. 7, p. 3513.

    Article  CAS  Google Scholar 

  13. Klimov, E.S., Buzaeva, M.V., Davydova, O.A., et al., Russ. J. Appl. Chem., 2014, vol. 87, no. 8, p. 1109.

    Article  CAS  Google Scholar 

  14. Klimov, E.S., Buzaeva, M.V., Davydova, O.A., et al., Russ. J. Appl. Chem., 2015, vol. 88, no. 8, p. 1229.

    Article  CAS  Google Scholar 

  15. Klimov, E.S., Isaev, A.V., Nishchev, K.N., Pynenkov, A.A., Gorin, D.A., Bratashov, D.N., Davydova, O.A., Buzaeva, M.V., and Vaganova, E.S., Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2014, vol. 16, no. 4–3, p. 568.

  16. Tkachev, A.G., Melezhik, A.V., D’yachkova, T.P., and Aladinskii, A.A., RF Patent 2528985; Byull. Izobret., 2014, no. 26.

  17. Glebova, N.V. and Nechitałlov, A.A., Tech. Phys. Lett., 2010, vol. 36, no. 10, p. 878.

    Article  CAS  Google Scholar 

  18. Pozdeeva, T.Yu. and Porozova, S.E., Tekhnol. Mashinostr. Materialoved., 2020, no. 4, p. 25.

  19. Knyazev, E.V., Bolotov, V.V., Ivlev, K.E., Povoroznyuk, S.N., Kan, V.E., and Sokolov, D.V., Phys. Solid State, 2019, vol. 61, p. 433.

    Article  CAS  Google Scholar 

  20. Tasis, D., Tagmatarchis, N., and Bianko, A., Chem. Rev., 2006, vol. 106, no. 3, p. 1105.

    Article  CAS  PubMed  Google Scholar 

  21. Yudianti, R., Onggo, H., Sudirman, et al., Open Mater. Sci. J., 2011, vol. 5, p. 242.

    Article  CAS  Google Scholar 

  22. Chattopadhyay, J., Cortez, F., and Chakraborty, S., Chem. Mater., 2006, vol. 18, no. 25, p. 5864.

    Article  CAS  Google Scholar 

  23. Rahman, M.M., Nat. Sci., 2011, vol. 3, p. 208.

    CAS  Google Scholar 

  24. Grazhulene, S.S., Red’kin, A.N. Telegin, G.F., et al., J. Anal. Chem., 2010, vol. 65, no. 7, p. 682.

    Article  CAS  Google Scholar 

  25. Shon T.L., Khu, V.N., and Rakov, E.G., Usp. Khim. Khim. Tekhnol., 2010, vol. 24, no. 8 (113), p. 77.

  26. Eletskii, A.V., Phys.—Usp., 2004, vol. 47, no. 11, p. 1191.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and the Government of the Ulyanovsk oblast, project no. 19-42-730011 r-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Buzaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

The article underwent additional review by ReACh and was revised before its publication in ReACh, as compared to the version published in Russian.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzaeva, M.V., Makarova, I.A., Vaganova, E.S. et al. Surface Modification of Multiwalled Carbon Nanotubes to Impart Technological Properties. rev. and adv. in chem. 13, 160–166 (2023). https://doi.org/10.1134/S263482762370023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263482762370023X

Keywords:

Navigation