Skip to main content
Log in

Damage caused by Tetranychus urticae and Frankliniella occidentalis on rose plant: effect of different initial population densities

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The western flower thrips, Frankliniella occidentalis (Pergand) (Thysanoptera: Thripidae), and the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), are major economic pests of many ornamental plants including roses. We investigated the effects of the initial population densities of 10, 15, 20, 25, 30, and 35 T. urticae, F. occidentalis, and T. urticae/F. occidentalis (co-infestation) on the final pest densities on leaves and petals, the leaf chlorophyll content, and flower shelf life on Rosa hybrida, under controlled conditions. We also evaluated F. occidentalis damage to the flower petals in the presence and absence of T. urticae. The evaluations were made 5, 10, or 15 days after infestations. The final population densities of T. urticae and F. occidentalis on leaves and petals were influenced by the initial population density treatment and the duration of infestation. Tetranychus urticae primarily colonized the leaf tissue and considerably fewer mites were present on petals whereas F. occidentalis primarily colonized flower petals; these patterns remained consistent for the T. urticae/F. occidentalis co-infestations. The chlorophyll content was influenced by the initial population density and the infestation duration of T. urticae and T. urticae/F. occidentalis. However, the initial population density and the infestation duration of F. occidentalis did not significantly affect the leaf chlorophyll content. Although flower shelf life was not influenced by the T. urticae presence or density, the initial population densities of 10, 15, 20, 25, 30, and 35 F. occidentalis reduced flower shelf life by 6.4, 17.5, 23.9, 32.6, 36.7, and 43.5%, respectively, in flowers harvested 5 days after infestation. The initial density of F. occidentalis also influenced the necrotic surface area and the number of damaged petals in the absence or presence of T. urticae. The damage threshold in cut roses is considerably lower for F. occidentalis compared to T. urticae and preventive methods are recommended to minimize losses to this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  • Alipour Z, Fathipour Y, Farazmand A (2016) Age-stage predation capacity of Phytoseiulus persimilis and Amblyseius swirskii (Acari: Phytoseiidae) on susceptible and resistant rose cultivars. Int J Acarol 42:224–228. https://doi.org/10.1080/01647954.2016.1171797

    Article  Google Scholar 

  • Atakan E, Ölçülü M, Pehlivan S, Özgür O (2016) An analysis of western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in lemons: Its abundance, distribution and damage status. J Entomol Zool Stud 4(2):109–114

    Google Scholar 

  • Bakr EM (2005) A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. J Appl Entomol 129(3):173–175. https://doi.org/10.1111/j.1439-0418.2005.00948.x

    Article  Google Scholar 

  • Bounfour M, Tanigoshi LK, Chen C, Cameron SJ, Klauer S (2002) Chlorophyll content and chlorophyll fluorescence in red raspberry leaves infested with Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Environ Entomol 31:215–220. https://doi.org/10.1603/0046-225X-31.2.215

    Article  CAS  Google Scholar 

  • Chacón-Hernández JC, Camacho-Aguilar I, Ernesto Cerna-Chavez E et al (2018) Effects of Tetranychus urticae and Phytoseiulus persimilis (Acari: Tetranychidae: Phytoseiidae) on the chlorophyll of rosal plants (Rosa sp.). J Agric 52(6):595–909

  • Chunlei C, Junrui Z, Lufei X, Hang G (2013) Effects of Frankliniella occidentalis feeding on the chlorophyll and nutrients in the leaves of Phaseolus vulgaris. J Plant Prot 39(2):20–24

    Google Scholar 

  • Cobb A (1992) Herbicides and plant physiology. Chapman and Hall, London

    Google Scholar 

  • Elimem M, Ben Othmen S, Limem-Sellemi E, Almohandes-Dridi B, Chermiti B (2018) Interactions between Frankliniella occidentalis (Insecta; Thysanoptera; Thripidae) damages and eleven pepper crop varieties’ photosynthetic pigmentations. J New Sci 8(2):169–177

    Google Scholar 

  • Emam AS, Aiad KA, Abdallah AM (2019) Effect of infestedc flowers by Haplothrips cottei and Tetranychus urticae on the vase life period under glasshouse conditions. Egypt Acad J Biol Sci 12(6):1–8. https://doi.org/10.21608/eajbsa.2019.55229

    Article  Google Scholar 

  • Eze JMO, Mayak S, Thompson JE, Dumbroff EB (1986) Senescence in cut carnation flowers: temporal and physiological relationships among water status, ethylene, abscisic acid and membrane permeability. Physiol Plant 68:323–328. https://doi.org/10.1111/j.1399-3054.1986.tb01934.x

    Article  CAS  Google Scholar 

  • Gonzalez D, Friesen R, Leigh TF, Wilson L, Waggoner M (1995) Naturally-occurring biological control: western flower thrips impact on spider mites in California cotton. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 317–323

    Chapter  Google Scholar 

  • Gupta J, Dubey RK (2018) Factors affecting post-harvest life of flower crops. Int J Curr Microbial Appl Sci 7(1):548–557. https://doi.org/10.20546/ijcmas.2018.701.065

    Article  CAS  Google Scholar 

  • Jayasinghe GG, Mallik B (2010) Growth stage based economic injury levels for Two Spotted Spider Mite, Tetranychus urticae Koch (Acari, Tetranychidae) on tomato Lycopersicon esculentum. Mill. Trop Agric 22(1):54–65. https://doi.org/10.4038/tar.v22i1.2670

    Article  Google Scholar 

  • Jesiotr LJ (1978) The injurious effects of the two spotted spider mite (Tetranychus Urticae Koch) on greenhouse roses. Ekol Polska 26:311–318

    Google Scholar 

  • Hatamian M, Souri MK (2019) Postharvest quality of roses under different levels of nitrogenous compounds in holding solution. Open Agric 4:79–85. https://doi.org/10.1515/opag-2019-0007

    Article  Google Scholar 

  • He Z, Guo JF, Reitz SR, Lei ZR, Wu SY (2020) Insect Sci 27(4):626–645. https://doi.org/10.1111/1744-7917.12721

    Article  PubMed  Google Scholar 

  • Hegde JN, Ashrith KN, Suma GS, Chakravarthy AK, Gopalkrishna HR (2020) Insect pests of roses and their management. In: Pal S, Chakravarthy AK (eds) Advances in pest mnagement in commercial flowers, 1st edn. Apple Academic Press, New York, p 18

    Google Scholar 

  • Hull LA, Beers EH (1990) Validation of injury thresholds for European red mite (Acari: Tetranychidae) on ‘Yorking’ and ‘Delicious’ apple. J Econ Entomol 83:2026–2031. https://doi.org/10.1093/jee/83.5.2026

    Article  Google Scholar 

  • Karar H, Bashir MA, Maqbool Ahmad M, Nisar MS (2020) Effect of host plant on mortification of flower thrips Frankliniella occidentalis Pergande (Thripidae: Thysanoptera) in Rose (Rosa indica). Fresenius Environ Bull 29(8):7023–7033

    CAS  Google Scholar 

  • Kirk WDJ (1984) Pollen-feeding in thrips (Insecta: Thysanoptera). J Zool 204:107–117. https://doi.org/10.1111/j.1469-7998.1984.tb02364.x

    Article  Google Scholar 

  • Lailaty IQ, Nugroho LH (2021) Morphological characters and plant pigments content of three varieties of chrysanthemum induced by paclobutrazol treatments. Advances in biological sciences research, 22. In: 7th International Conference on Biological Science (ICBS 2021)

  • Landeros J, Guevara LP, Badii MH, Flores AE (2004) Effect of different densities of the two spotted spider mite Tetranychus urticae on CO2 assimilation, transpiration, and stomatal behaviour in rose leaves. Exp Appl Acarol 32:187–198

    Article  CAS  PubMed  Google Scholar 

  • López-Bautista E, MaT S-G, Suárez- Espinosa J, Cruz-Huerta N, Bautista-Martínez N, Alcántara- Jiménez JA (2016) Damage caused by mite Tetranychus merganser (Trombidiformes: Tetranychidae) on Carica papaya (Violales: Caricaceae) plants and effect of two species of predatory mite. Int J Acarology 42(6):303–309. https://doi.org/10.1080/01647954.2016.1184714

    Article  Google Scholar 

  • Maklad AMH, Abozeid SM, Emam AS (2019) Effect of the infestation by Aphis nerii and Tetranychus urticae on the vase live period of jasmine flowers under glasshouse. Egypt J Plant Prot Res Inst 2(4):546–552

    Google Scholar 

  • Miles A (2015) Dynamic aspects of the chemical relation between the Tetranychus urticae and jasmine buds. Entomol Exp Appl 22(5):125–137

    Google Scholar 

  • Murphy G, Ferguson G, Shipp L (2004) Biology of thrips in greenhouse crops. Queen’s Printer for Ontario, Toronto

    Google Scholar 

  • Nasruddin A, Smitley DR (1991) Relationship of Frankliniella occidentalis (Thysanoptera: Thripidae) population density and feeding injury to the frequency of insecticide applications to gloxinia. J Econ Entomol 84(6):1812–1817. https://doi.org/10.1093/jee/84.6.1812

    Article  CAS  Google Scholar 

  • Oene LV, Mattiuz CFM, Brito TS, Pan R (2019) Post-harvesting of roses cv. Ipanema Plant Sci 9:70–80

    Google Scholar 

  • Otero G (2002) Acaros plaga de plantas ornamentals. In: Bautista N, Alvarado J, Chaveria JC, Sanchez YH (eds) Manejo Fitosanitario de Ornamentales. Colegio de Posgraduados e Instituto de Fitosanidad 8–24

  • Palta JP (1990) Leaf chlorophyll content. Remote Sens 5(1):207–213. https://doi.org/10.1080/02757259009532129

    Article  Google Scholar 

  • Parrella MP, Jones VP (1987) Development of integrated pest management strategies of floricultural crops. Ann Entomol 33(1):28–34

    Google Scholar 

  • Reddy GVP, Kikuchi R, Bautista JR (2013) Threshold-based spraying decision programs for the red spider mite Tetranychus marianae on eggplant. J Appl Entomol 137:429–436. https://doi.org/10.1111/jen.12007

    Article  CAS  Google Scholar 

  • Rosenheim JA, Welter SC, Johnson MW, Mau RFL, Gusukuma-Minutoi LR (1990) Direct feeding damage on cucumber by mixed-species infestations of Thrips palmi and Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 83(4):1519–1525. https://doi.org/10.1093/jee/83.4.1519

    Article  Google Scholar 

  • Sakimura K (1986) Thrips in and around coconut plantations in Jamaica, with a few taxonomic notes (Thysanoptera). Fla Entomol 69:348–363. https://doi.org/10.2307/3494940

    Article  Google Scholar 

  • SAS Institute Inc. (2004) SAS/STAT 9.1 User’s Guide, Cary, NC

  • Shipp JL, Hao X, Papadopoulos AP, Binns MR (1998a) Impact of western flower thrips (Thysanoptera: Thripidae) on growth, photosynthesis and productivity of greenhouse sweet pepper. Sci Hortic 72:87–102. https://doi.org/10.1016/S0304-4238(01)00301-6

    Article  Google Scholar 

  • Shipp JL, Binns MR, Hao X, Wang K (1998b) Economic injury levels for western flower thrips (Thysanoptera: Thripidae) on greenhouse sweet pepper. J Econ Entomol 91:671–677. https://doi.org/10.1093/jee/91.3.671

    Article  Google Scholar 

  • Shipp JL, Wang K, Binns MR (2000) Economic injury levels for western flower thrips (Thysanoptera: Thripidae) on greenhouse cucumber. J Econ Entomol 93(6):1732–1740. https://doi.org/10.1603/0022-0493-93.6.1732

    Article  CAS  PubMed  Google Scholar 

  • Stern VM, Smith RF, van den Bosch R, Hagen KS (1959) The integrated control concept. Hilgardia 29:81–101

    Article  CAS  Google Scholar 

  • Stone M (2012) Factors affecting the growth of jasmine flowers from shoot apices. Ann Appl Biol 5(2):45–57

    Google Scholar 

  • Strzyzewski IL, Funderburk JE, Renkema JM, Smith HA (2021) Characterization of Frankliniella occidentalis and Frankliniella bispinosa (Thysanoptera: Thripidae) injury to strawberry. J Econ Entomol 114(2):794–800. https://doi.org/10.1093/jee/toaa311

  • Taiz L, Zeiger E (1991) Plant physiology. Benjamin, Redwood

    Google Scholar 

  • Terry LI, DeCrandi-Hoffman G (1988) Monitoring western flower thrips (Thysanoptera: Thripidae) in “Granny Smith” apple blossom clusters. Can Entomol 120:1003–1016. https://doi.org/10.4039/Ent1201003-11

    Article  Google Scholar 

  • Trichilo PJ, Leigh TF (1986) Predation on spider mite eggs by the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), an opportunist in a cotton agroecosystem. Environ Entomol 15:821–825. https://doi.org/10.1093/ee/15.4.821

    Article  Google Scholar 

  • Trichilo PJ, Leigh TF (1988) Influence of resource quality on the reproductive fitness of flower thrips (Thysanoptera: Thripidae). Ann Entomol Soc 81:64–70. https://doi.org/10.1093/aesa/81.1.64

    Article  Google Scholar 

  • Vehniwal SS, Abbey L (2019) Cut flower vase life–influential factors, metabolism and organic formulation. Int J Hortic Sci 3(6):275–281

    Google Scholar 

  • Welter SC, Rosenheim JA, Johnson MW, Mau RFL, Gusukuma-Minuto LR (1990) Effects of Thrips palmi and western flower thrips (Thysanoptera: Thripidae) on yield, growth, and carbon allocation patterns in cucumbers. J Econ Entomol 83:2092–2101. https://doi.org/10.1093/jee/83.5.2092

    Article  Google Scholar 

  • Wilson LJ, Bauer LR, Walter GH (1996) ‘Phytophagous’ thrips are facultative predators of two-spotted spider mites (Acari: Tetranychidae) on cotton in Australia. Bull Entomol Res 86:297–305. https://doi.org/10.1017/S0007485300052597

    Article  Google Scholar 

  • Zhi J, Margolies DC, Nechols JR, Boyer JE Jr (2006) Host-plant-mediated interaction between populations of a true omnivore and its herbivorous prey. Entomol Exp App 121:59–66. https://doi.org/10.1111/j.1570-8703.2006.00456.x

    Article  Google Scholar 

Download references

Acknowledgements

In memory of Dr. Hamidreza Hajiqanbar, the major advisor, a dear friend, and colleague, who was a key contributor to this work and its first draft. The authors acknowledge the Department of Entomology, Tarbiat Modares University and the Ornamental Plant Research Center for their support of this work. Special thanks go to Dr. Ali Mokhtassi-Bidgoli (Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran) for his assistance in part of the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Fathipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Yulin Gao and Ingeborg Menzler-Hokkanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, S., Hajiqanbar, H., Fathipour, Y. et al. Damage caused by Tetranychus urticae and Frankliniella occidentalis on rose plant: effect of different initial population densities. Arthropod-Plant Interactions 18, 117–127 (2024). https://doi.org/10.1007/s11829-023-10014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-023-10014-9

Keywords

Navigation