Skip to main content
Log in

Impact of Elevational Gradients and Chemical Parameters on Changes in Soil Bacterial Diversity Under Semiarid Mountain Region

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Elevation gradients, often regarded as “natural experiments or laboratories”, can be used to study changes in the distribution of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We obtained bacterial sequences using MiSeq sequencing and clustered them into operational taxonomic units (OTUs). The total number of reads obtained by the bacterial 16S rRNA sequencing analysis was 1,090,555, with an average of approximately 45,439 reads per sample collected from various elevations. The current study observed inconsistent bacterial diversity patterns in samples from the lowest to highest elevations. 983 OTUs were found common among all the elevations. The most unique OTUs were found in the soil sample from elevation_2, followed by elevation_1. Soil sample collected at elevation_6 had the least unique OTUs. Actinobacteria, Protobacteria, Chloroflexi were found most abundant bacterial phyla in current study. Ammonium nitrogen (NH4+-N), and total phosphate (TP) are the main factors influencing bacterial diversity at elevations_1. pH was the main factor influencing the bacterial diversity at elevations_2, elevation_3 and elevation_4. Our results provide new visions on forming and maintaining soil microbial diversity along an elevational gradient and have implications for microbial responses to environmental change in semiarid mountain ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta-Martínez, V., Dowd, S., Sun, Y., & Allen, V. (2008). Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry,40, 2762–2770.

    Article  Google Scholar 

  • Anikwe, M., Eze, J., & Ibudialo, A. (2016). Influence of lime and gypsum application on soil properties and yield of cassava (Manihot esculenta Crantz.) in a degraded ultisol in Agbani, Enugu Southeastern Nigeria. Soil and Tillage Research,158, 32–38.

    Article  Google Scholar 

  • Baker, B. J., Sheik, C. S., Taylor, C. A., Jain, S., Bhasi, A., Cavalcoli, J. D., & Dick, G. J. (2013). Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. The ISME Journal,7, 1962–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science,10, 1068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science,17, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis,111, 458–467.

    Article  CAS  PubMed  Google Scholar 

  • Blaud, A., Lerch, T. Z., Phoenix, G. K., & Osborn, A. M. (2015). Arctic soil microbial diversity in a changing world. Research in Microbiology,166, 796–813.

    Article  PubMed  Google Scholar 

  • Borneman, J., Skroch, P. W., O’Sullivan, K. M., Palus, J. A., Rumjanek, N. G., Jansen, J. L., Nienhuis, J., & Triplett, E. W. (1996). Molecular microbial diversity of an agricultural soil in Wisconsin. Applied and Environmental Microbiology,62, 1935–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant, J. A., Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J., & Green, J. L. (2008). Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences,105, 11505–11511.

    Article  CAS  Google Scholar 

  • Buckley, D. H., & Schmidt, T. M. (2003). Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environmental Microbiology,5, 441–452.

    Article  PubMed  Google Scholar 

  • Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: The microbiology of Antarctic dry valley soils. Nature Reviews Microbiology,8, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Chanal, A., Chapon, V., Benzerara, K., Barakat, M., Christen, R., Achouak, W., Barras, F., & Heulin, T. (2006). The desert of Tataouine: An extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environmental Microbiology,8, 514–525.

    Article  CAS  PubMed  Google Scholar 

  • Chu, H., Fierer, N., Lauber, C. L., Caporaso, J., Knight, R., & Grogan, P. (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology,12, 2998–3006.

    Article  CAS  PubMed  Google Scholar 

  • Costello, E. K., Halloy, S. R. P., Reed, S. C., Sowell, P., & Schmidt, S. K. (2009). Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Applied and Environmental Microbiology,75, 735–747.

    Article  CAS  PubMed  Google Scholar 

  • DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., & Radosevich, M. (2011). Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied an/d Environmental Microbiology,77, 6295–6300.

    Article  CAS  Google Scholar 

  • Ding, J., Jiang, X., Guan, D., Zhao, B., Ma, M., Zhou, B., Cao, F., Yang, X., Li, L., & Li, J. (2017). Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese mollisols. Applied Soil Ecology,111, 114–122.

    Article  Google Scholar 

  • Eilers, K. G., Lauber, C. L., Knight, R., & Fierer, N. (2010). Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry,42, 896–903.

    Article  CAS  Google Scholar 

  • Eisenlord, S. D., & Zak, D. R. (2010). Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils. Soil Science Society of America Journal,74(4), 1157–1166.

    Article  CAS  Google Scholar 

  • Ferrari, B. C., Bissett, A., Snape, I., van Dorst, J., Palmer, A. S., Ji, M., Siciliano, S. D., Stark, J. S., Winsley, T., & Brown, M. V. (2016). Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environmental Microbiology,18, 1834–1849.

    Article  PubMed  Google Scholar 

  • Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology,88, 1354–1364.

    Article  PubMed  Google Scholar 

  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences,103, 626–631.

    Article  CAS  Google Scholar 

  • Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., & Knight, R. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal,6, 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., McCain, C. M., Meir, P., Zimmermann, M., Rapp, J. M., Silman, M. R., & Knight, R. (2011). Microbes do not follow the elevational diversity patterns of plants and animals. Ecology,92, 797–804.

    Article  PubMed  Google Scholar 

  • Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., & Hartmann, M. (2016). Microbial diversity in european alpine permafrost and active layers. FEMS Microbiology Ecology,92, fiw018.

    Article  PubMed  Google Scholar 

  • Giri, D. D., Shukla, P. N., Kashyap, S., Singh, P., Kashyap, A. K., & Pandey, K. D. (2007). Variation in methanotrophic bacterial population along an altitude gradient at two slopes in tropical dry deciduous forest. Soil Biology and Biochemistry,39, 2424–2426.

    Article  CAS  Google Scholar 

  • Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology,27, 1231–1240.

    Article  Google Scholar 

  • Grube, M., Köberl, M., Lackner, S., Berg, C., & Berg, G. (2012). Host–parasite interaction and microbiome response: Effects of fungal infections on the bacterial community of the Alpine lichen Solorina crocea. FEMS Microbiology Ecology,82, 472–481.

    Article  CAS  PubMed  Google Scholar 

  • Grzyb, A., Wolna-Maruwka, A., & Niewiadomska, A. (2020). Environmental factors affecting the mineralization of crop residues. Agronomy,10, 1951.

    Article  CAS  Google Scholar 

  • Han, C., Liu, Y., Zhang, C., Li, Y., Zhou, T., Khan, S., Chen, N., & Zhao, C. (2021). Effects of three plantation coniferous species on plant-soil feedbacks and soil physical and chemical properties in semi-arid mountain ecosystems. Forest Ecosystems,8, 3.

    Article  Google Scholar 

  • Hanada, S., Takaichi, S., Matsuura, K., & Nakamura, K. (2002). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. International Journal of Systematic and Evolutionary Microbiology,52, 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Hardie, M., & Doyle, R. (2012). Measuring Soil Salinity. In S. Shabala & T. Cuin (Eds.), Plant Salt Tolerance: Methods and Protocols (pp. 415–425). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Huse, S. M., Dethlefsen, L., Huber, J. A., Welch, D. M., Relman, D. A., & Sogin, M. L. (2008). Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics,4, e1000255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanova, A. A., Kulichevskaya, I. S., Merkel, A. Y., Toshchakov, S. V., & Dedysh, S. N. (2016). High diversity of Planctomycetes in soils of two lichen-dominated sub-arctic ecosystems of Northwestern Siberia. Frontiers in Microbiology,7, 2065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology,72, 1719–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., & Sait, M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology,68, 2391–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology,18, 35–46.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, S. N., Waite, I. S., Blackburn, A., Husband, R., Rushton, S. P., Manning, D. C., & O’Donnell, A. G. (2009). Actinobacterial community dynamics in long term managed grasslands. Antonie van Leeuwenhoek,95, 319–334.

    Article  PubMed  Google Scholar 

  • Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal,3, 442–453.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. S., Dungan, R. S., & Crowley, D. (2008). Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biology and Fertility of Soils,44, 1003–1011.

    Article  CAS  Google Scholar 

  • King, A. J., Freeman, K. R., McCormick, K. F., Lynch, R. C., Lozupone, C., Knight, R., & Schmidt, S. K. (2010). Biogeography and habitat modelling of high-alpine bacteria. Nature Communications,1, 53.

    Article  PubMed  Google Scholar 

  • Klatt, C. G., Liu, Z., Ludwig, M., Kühl, M., Jensen, S. I., Bryant, D. A., & Ward, D. M. (2013). Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. The ISME Journal,7, 1775–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lage, O. M., & Bondoso, J. (2012). Bringing Planctomycetes into pure culture. Frontiers in Microbiology,3, 405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology,75, 5111–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y. T., Huang, Y. J., Tang, S. L., Whitman, W. B., Coleman, D. C., & Chiu, C. Y. (2010). Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microbial Ecology,59, 369–378.

    Article  PubMed  Google Scholar 

  • Liu, Z., & Liu, J. (2013). Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. MicrobiologyOpen,2, 492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomolino, M. V. (2001). Elevation gradients of species-density: Historical and prospective views. Global Ecology and Biogeography,10, 3–13.

    Article  Google Scholar 

  • Ma, X., Chen, T., Zhang, G., & Wang, R. (2004). Microbial community structure along an altitude gradient in three different localities. Folia Microbiologica,49, 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Martin, D. D., Ciulla, R. A., & Roberts, M. F. (1999). Osmoadaptation in archaea. Applied and Environmental Microbiology,65, 1815–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A., et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science,332, 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Mendez, M. O., Neilson, J. W., & Maier, R. M. (2008). Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Applied and Environmental Microbiology,74, 3899–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African,7, e00246.

    Article  Google Scholar 

  • Mori, H., Maruyama, F., Kato, H., Toyoda, A., Dozono, A., Ohtsubo, Y., Nagata, Y., Fujiyama, A., Tsuda, M., & Kurokawa, K. (2014). Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Research,21, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Myers, R. T., Zak, D. R., White, D. C., & Peacock, A. (2001). Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Science Society of America Journal,65, 359–367.

    Article  CAS  Google Scholar 

  • Nemergut, D. R., Cleveland, C. C., Wieder, W. R., Washenberger, C. L., & Townsend, A. R. (2010). Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biology and Biochemistry,42, 2153–2160.

    Article  CAS  Google Scholar 

  • Obalum, S., Chibuike, G., Peth, S., & Ouyang, Y. (2017). Soil organic matter as sole indicator of soil degradation. Environmental Monitoring and Assessment,189, 176.

    Article  CAS  PubMed  Google Scholar 

  • Pellissier, L., Niculita-Hirzel, H., Dubuis, A., Pagni, M., Guex, N., Ndiribe, C., Salamin, N., Xenarios, I., Goudet, J., Sanders, I. R., et al. (2014). Soil fungal communities of grasslands are environmentally structured at a regional scale in the A lps. Molecular Ecology,23, 4274–4290.

    Article  CAS  PubMed  Google Scholar 

  • Powell, J. T., Chatziefthimiou, A. D., Banack, S. A., Cox, P. A., & Metcalf, J. S. (2015). Desert crust microorganisms, their environment, and human health. Journal of Arid Environments,112, 127–133.

    Article  Google Scholar 

  • Rahbek, C. (1995). The elevational gradient of species richness: A uniform pattern? Ecography,18, 200–205.

    Article  Google Scholar 

  • Ramirez, K. S., Craine, J. M., & Fierer, N. (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology,18, 1918–1927.

    Article  Google Scholar 

  • Reis, V. M., Teixeira, K. R. d. S. (2015). Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. Journal of Basic Microbiology, 55, 931–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanaei, A., Sayer, E. J., Yuan, Z., Lin, F., Fang, S., Ye, J., Liu, S., Hao, Z., & Wang, X. (2022). Soil stoichiometry mediates links between tree functional diversity and soil microbial diversity in a temperate forest. Ecosystems,25, 291–307.

    Article  CAS  Google Scholar 

  • Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R., & Dowd, S. E. (2012). Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PloS one, 7(7), e40338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., & Chu, H. (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry,57, 204–211.

    Article  CAS  Google Scholar 

  • Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., & Stuczyński, T. (2020). Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy,10, 1429.

    Article  CAS  Google Scholar 

  • Singh, D., Lee-Cruz, L., Kim, W. S., Kerfahi, D., Chun, J. H., & Adams, J. M. (2014). Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biology and Biochemistry,68, 140–149.

    Article  CAS  Google Scholar 

  • Singh, D., Takahashi, K., Kim, M., Chun, J., & Adams, J. M. (2012). A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microbial Ecology,63, 429–437.

    Article  PubMed  Google Scholar 

  • Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S., & Wernars, K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology,67, 2284–2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen, P. O., Germino, M. J., & Feris, K. P. (2013). Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C. Soil Biology and Biochemistry,64, 155–163.

    Article  CAS  Google Scholar 

  • Spain, A. M., Krumholz, L. R., & Elshahed, M. S. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal,3, 992–1000.

    Article  CAS  PubMed  Google Scholar 

  • Unger, I. M., Kennedy, A. C., & Muzika, R. M. (2009). Flooding effects on soil microbial communities. Applied Soil Ecology,42, 1–8.

    Article  Google Scholar 

  • Valinsky, L., Della Vedova, G., Scupham, A. J., Alvey, S., Figueroa, A., Yin, B., Hartin, R. J., Chrobak, M., Crowley, D. E., Jiang, T., et al. (2002). Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Applied and Environmental Microbiology,68, 3243–3250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallejo, V. E., Arbeli, Z., Terán, W., Lorenz, N., Dick, R. P., & Roldan, F. (2012). Effect of land management and Prosopisjuliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agriculture, Ecosystems and Environment,150, 139–148.

    Article  CAS  Google Scholar 

  • Wang, J., Soininen, J., Zhang, Y., Wang, B., Yang, X., & Shen, J. (2011). Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography,38, 595–603.

    Article  Google Scholar 

  • Wolińska, A., Górniak, D., Zielenkiewicz, U., Goryluk-Salmonowicz, A., Kuźniar, A., Stępniewska, Z., & Błaszczyk, M. (2017). Microbial biodiversity in arable soils is affected by agricultural practices. International Agrophysics,31, 259–271.

    Article  Google Scholar 

  • Yang, H., Lü, G., Jiang, H., Shi, D., & Liu, Z. (2017). Diversity and distribution of soil micro-fungi along an elevation gradient on the north slope of Changbai Mountain. Journal of Forestry Research,28, 831–839.

    Article  CAS  Google Scholar 

  • Yarwood, S. A., Myrold, D. D., & Högberg, M. N. (2009). Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest. FEMS Microbiology Ecology,70, 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Youssef, N., Sheik, C. S., Krumholz, L. R., Najar, F. Z., Roe, B. A., & Elshahed, M. S. (2009). Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Applied and Environmental Microbiology,75, 5227–5236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X. Y., Zhu, Y. J., Wang, B., Liu, D., Bai, H., Jin, L., Wang, B. T., Ruan, H. H., Mao, L., Jin, F. J., & Yang, N. (2021). Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages. Forest Ecology and Management,494, 119328.

    Article  Google Scholar 

  • Zhang, Y., Cong, J., Lu, H., Li, G., Xue, Y., Deng, Y., Li, H., Zhou, J., & Li, D. (2015). Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microbial Biotechnology,8, 739–746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Dyck, M., Cai, H., Song, L., & Hui, C. (2019). The effects of aerated irrigation on soil respiration, oxygen, and porosity. Journal of Integrative Agriculture,18, 2854–2868.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDA 20100101), Major Special Science and Technology Project of Gansu Province (Grant no. 18ZD2FA009) and National Natural Science Foundation of China, NSFC (Grant no. 31522013).

Author information

Authors and Affiliations

Authors

Contributions

SK designed the study. SK, CH collected soil samples. SK, AI analyze the data, CG and CZ supervised.

Corresponding author

Correspondence to Changming Zhao.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to report.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Han, C., Iqbal, A. et al. Impact of Elevational Gradients and Chemical Parameters on Changes in Soil Bacterial Diversity Under Semiarid Mountain Region. J Microbiol. 61, 903–915 (2023). https://doi.org/10.1007/s12275-023-00085-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00085-x

Keywords

Navigation