Skip to main content
Log in

The Ultraviolet-B Radiation Characteristics of Planar Excilamps Filled with Gas Mixture of Xenon, Bromine and Chlorine

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Ultraviolet B radiation (UVB) is widely used in agricultural plant growth and phototherapy. The traditional light sources have a low UVB radiation efficiency, poor uniformity radiation, high energy consumption, and short service lifetime. The multiband XeBr* and XeCl* planar excilamps as high-power UVB sources have not been researched in existing studies and the power density of XeBr*/XeCl* excilamps reported in the study are not high. This work presents a high-power density planar excilamp of homogeneous dielectric barrier discharge in a mixture of xenon and molecular bromine and chlorine (Xe/Br2/Cl2). The spectrum, electrical parameters, total gas pressure, and gas mixture composition, have been analyzed. For the multiband excilamp filled with Xe/Br2/Cl2, it has been demonstrated that the maximum UVB and total radiant efficiency is 7.9% and 9.7% with optimal chlorine ratio of 0.1% and the bromine ratio ranging from 0.1 to 0.2%, with the input power of 138 W at the total pressure of gas mixture of 200 mbar. This work has confirmed that the percentage of bromine molecules must be higher than the percentage of chlorine by a factor of about 2.6 to achieve the same intensities of the XeBr* 282 nm and XeCl* 308 nm bands. These results allow to find out the optimum radiation efficiency of multiband excilamps with a large planar geometry to meet the requirement of UVB industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Meyer P, Van De Poel B, De Coninck B (2021) UV-B light and its application potential to reduce disease and pest incidence in crops. Hortic Res 8:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schitz DV, Ivankov AS (2021) Design features of the excimer lamp for UVB therapy. In: XV international conference on pulsed lasers and laser applications, Tomsk, Russian Federation, pp 1–6

  3. Lopes C, Trevisani VF, Melnik T (2016) Efficacy and safety of 308 nm monochromatic excimer lamp versus other phototherapy devices for vitiligo: a systematic review with meta-analysis. Am J Clin Dermatol 17:23–32

    Article  PubMed  Google Scholar 

  4. Terenetskaya I (2004) Two methods for direct assessment of the vitamin D synthetic capacity of sunlight and artificial UV sources. J Steroid Biochem Mol Biol 89:623–626

    Article  PubMed  Google Scholar 

  5. Podkopaev AV, Miskevich AI (2018) Experimental research of XeBr excimer molecule luminescence in Ar-Xe-C2HBrClF3 gas mixture with high energy particles excitation. KnE Energy 3:130–137

    Article  Google Scholar 

  6. Anufrik S, Volodenkov A, Znosko K (2019) Method of modeling of XeCl excilamps with barrier discharge on the basis HCl halogen donors. In: 2019 IEEE 8th international conference on advanced optoelectronics and lasers (CAOL). IEEE, pp 1–4

  7. Popova SAMGG, Batoev VB (2023) Dual-wavelength UV degradation of bisphenol A and bezafibrate in aqueous solution using excilamps (222, 282 nm) and LED (365 nm): yes or no synergy? J Environ Sci Heal A 58:1–14

    Article  Google Scholar 

  8. Tsenter I, Garkusheva N, Matafonova G, Batoev V (2022) A novel water disinfection method based on dual-wavelength UV radiation of KrCl (222 nm) and XeBr (282 nm) excilamps. J Environ Chem Eng 10:107537

    Article  CAS  Google Scholar 

  9. Al-Mutairi N, Al-Haddad A (2013) Targeted phototherapy using 308 nm XeCl monochromatic excimer laser for psoriasis at difficult to treat sites. Lasers Med Sci 28:1119–1124

    Article  PubMed  Google Scholar 

  10. Sosnin EA, Oppenlander T, Tarasenko VF (2006) Applications of capacitive and barrier discharge excilamps in photoscience. J Photochem Photobiol C 7:145–163

    Article  CAS  Google Scholar 

  11. Heering W (2004) UV sources–basics, properties and applications. IUVA News 6(4):7–13

    Google Scholar 

  12. Oda A, Sugawara H, Sakai Y, Akashi H (2000) Estimation of the light output power and efficiency of Xe barrier discharge excimer lamps using a one-dimensional fluid model for various voltage waveforms. J Phys D Appl Phys 33:1507–1513

    Article  CAS  Google Scholar 

  13. Avdeev SM, Kostyrya ID, Sosnin EA, Tarasenko VF (2006) Generation of nanosecond pulses in a barrier-discharge XeBr excimer lamp. J Phys D Appl Phys 51:878–881

    CAS  Google Scholar 

  14. Heneral AA, Zhmenyak YV (2018) Luminescent characteristics of a pulsed discharge plasma in Xe-KBr mixture. J App Spectrosc 85:79–83

    Article  CAS  Google Scholar 

  15. Heneral AA, Avtaeva SV (2017) Emission characteristics of plasma based on xenon-rubidium bromide mixture. Opt Spectrosc 123:531–534

    Article  CAS  Google Scholar 

  16. Florez D, Schitz D, Piquet H, Diez R (2018) Efficiency of an exciplex DBD lamp excited under different methods. IEEE Trans Plasma Sci 46:140–147

    Article  CAS  Google Scholar 

  17. Divya Deepak G, Joshi NK, Pal DK, Prakash R (2017) A low power miniaturized dielectric barrier discharge based atmospheric pressure plasma jet. Rev Sci Instrum 88:013505

    Article  CAS  PubMed  Google Scholar 

  18. Kelman VA, Shpenik YO, Zhmenyak YV (2011) XeBr excilamp based on a non-toxic component mixture. J Phys D Appl Phys 44:255202

    Article  Google Scholar 

  19. Saghi B, Avtaeva SV, Rahmani B, Zissis G (2016) Effects of the Operating conditions on the UV-B (308 nm) power and efficiency of the XeCl* barrier discharge excilamp. IEEE Access 4:792–802

    Article  Google Scholar 

  20. Sosnin EA, Avdeev SM, Panarin VA, Tarasenko VF, Pikulev AA, Tsvetkov VM (2011) The radiative and thermodynamic processes in DBD driven XeBr and KrBr exciplex lamps. Eur Phys J D 62:405–411

    Article  CAS  Google Scholar 

  21. Avdeev SM, Boichenko AM, Sosnin EA, Tarasenko VF, Yakovlenko SI (2007) Barrier-discharge excilamp on a mixture of krypton and molecular bromine and chlorine. Laser Phys 17:1119–1123

    Article  CAS  Google Scholar 

  22. Klenovskii MS, Kelman VA, Zhmenyak YV, Shpenik YO (2013) Luminescence of XeCl* and XeBr* exciplex molecules initiated by a longitudinal pulsed discharge in a three-component mixture of Xe with CsCl and CsBr vapors. Opt Spectrosc 114:197–204

    Article  CAS  Google Scholar 

  23. Shuaibov Ak, Dashchenko Ai, Shevera I (2002) Multiwavelength low-pressure radiation source based on argon and xenon chlorides. Opt Spectrosc 92:690–691

    Article  CAS  Google Scholar 

  24. Han Q, Zhu Q, Liu C, Zhang S (2019) Radiant characteristics of high power excilamps with binary exciplexes of XeCl and XeBr. J Phys D Appl Phys 52:215201

    Article  CAS  Google Scholar 

  25. Doanh LT, Bhosle S, Zissis G, Piquet H (2013) Estimation of the light output power and efficiency of a XeCl dielectric barrier discharge exciplex lamp using one-dimensional drift–diffusion model for various voltage waveforms. IEEE Trans Ind Appl 49:331–340

    Article  CAS  Google Scholar 

  26. Guivan NN, Janca J, Brablec A, Stahel P, Slavıcek P, Shimon LL (2005) Planar UV excilamp excited by a surface barrier discharge. J Phys D Appl Phys 38:3188–3193

    Article  CAS  Google Scholar 

  27. Panchenko AN, Tarasenko VF (2006) Planar excilamp on rare gas chlorides pumped by a transverse self-sustained discharge. Quant Electron 36:169–173

    Article  CAS  Google Scholar 

  28. Panchenko AN, Tarasenko VF, Belokurov AN, Mendoza P, Rios I (2006) Planar KrCl* excilamp pumped by transverse self-sustained discharge with optical system for radiation concentration. Phys Scr 74:108–113

    Article  CAS  Google Scholar 

  29. Sosnin EA, Panarin VA, Pikulev AA, Tarasenko VF (2013) Theoretical and experimental study of the acoustic spectrum of a DBD-driven planar KrCl excilamp. Eur Phys J D 67:1–15

    Article  Google Scholar 

  30. Avdeev SM, Erofeev MV, Sosnin EA, Tarasenko VF (2008) Barrier discharge planar excilamps. Atmos Ocean Opt 21:626–628

    Google Scholar 

  31. Sosnin EA, Tarasenko VF (1997) A planar XeCl-exilamp pumped by a low-pressure glow discharge. Techn Phys 42:1411–1413

    Article  Google Scholar 

  32. Han Q, An R, Xu W, Lister G, Zhang S (2013) Radiation characteristics of coaxial KrBr* excilamps based on a dielectric barrier discharge. J Phys D Appl Phys 46:505203

    Article  Google Scholar 

  33. Lomaev MI (2001) Determination of energy input in barrier discharge excilamps. Atmos Ocean Opt 14:1005–1008

    Google Scholar 

  34. Han QY, Zhuang XB, Xu W, Zhang SD (2013) Radiant efficiency of coaxial KrBr* excilamps with high power density. J Light Visual Environ 37:176–182

    Article  Google Scholar 

  35. Sosnin EA, Avdeev SM, Tarasenko VF, Skakun VS, Schitz DV (2015) KrCl barrier-discharge excilamps: energy characteristics and applications (Review). Instru Exp Tech 58:309–318

    Article  Google Scholar 

  36. Sasges M, Robinson J, Daynouri F (2012) Ultraviolet lamp output measurement: a concise derivation of the keitz equation. Ozone Sci Eng 34:306–309

    Article  CAS  Google Scholar 

  37. Zhuang XB, Han QY, Zhang HJ, Feng XF, Roth M, Rosier O, Zhu SL, Zhang SD (2010) The efficiency of coaxial KrCl* excilamps. J Phys D Appl Phys 43:205202

    Article  Google Scholar 

  38. Panchenko AN, Tarasenko VF (2008) Barrier-discharge-excited coaxial excilamps with the enhanced pulse energy. Quant Electron 38:88–91

    Article  CAS  Google Scholar 

  39. Boichenko AM, Yakovlenko SI (2004) Simulation of KrCl (222 nm) and XeCl (308 nm) excimer lamps with Kr:HCl(Cl2) and Xe:HCl(Cl2) binary and Ne:Kr:Cl2 ternary mixtures excited by glow discharge. Laser Phys 14:1–14

    CAS  Google Scholar 

  40. Xu JZ, Liang RJ, Ren ZX (2001) UV Emission of excimer XeCl excited in dielectric barrier discharge by using pulse power supply. Plasma Sci Technol 3:933–940

    Article  CAS  Google Scholar 

  41. Pipa AV, Bussiahn R (2011) Optimization of a dielectric barrier discharge for pulsed UV emission of XeCl at 308 nm. Contrib Plasma Phys 51:850–862

    Article  CAS  Google Scholar 

  42. Avtaeva SV, Sosnin EA, Saghi B, Panarin VA, Rahmani B (2013) Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp. Plasma Phys Rep 39:768–778

    Article  CAS  Google Scholar 

  43. Searles SK, Hart GA (1975) Stimulated emission at 281.8 nm from XeBr. Appl Phys Lett 27:243–245

    Article  CAS  Google Scholar 

  44. Williams WH, Miley GH (1994) Nuclear pumped XeBr* fluorescence. J Appl Phys 75:1900–1908

    Article  CAS  Google Scholar 

  45. Avtaeva SV, Saghi B, Rahmani B (2011) One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.01Cl2 mixture. IEEE Trans Plasma Sci 39:1814–1822

    Article  CAS  Google Scholar 

  46. Hart GA, Searles SK (1976) Kinetic model of the XeBr rare-gas monohalide excimer laser. J Appl Phys 47:2033–2036

    Article  CAS  Google Scholar 

  47. Zhang J, Boyd IW (1996) Efficient excimer ultraviolet sources from a dielectric barrier discharge in rare-gas/halogen mixtures. J Appl Phys 80:633–638

    Article  CAS  Google Scholar 

  48. Falkenstein Z, Coogan JJ (1997) The development of a silent discharge-driven XeBr* excimer UV light source. J Phys D Appl Phys 30:2704–2710

    Article  CAS  Google Scholar 

  49. Erofeev MV, Tarasenko VF (2008) Study of a volume discharge in inert-gas halides without preionisation. Quant Electron 38:401–403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant NO. 11505031).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SDZ, QYH, and QWZ; methodology, SDZ, QYH, and QWZ; investigation, QWZ; resources, SDZ; software, QWZ; data curation, QWZ; writing—original draft preparation, QWZ; writing—review and editing, SDZ and QYH; supervision, SDZ, QYH; project administration, QYH and SDZ; funding acquisition, SDZ and QYH All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Qiuyi Han or Shanduan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

It was not applicable for both human and/ or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Han, Q. & Zhang, S. The Ultraviolet-B Radiation Characteristics of Planar Excilamps Filled with Gas Mixture of Xenon, Bromine and Chlorine. Plasma Chem Plasma Process 44, 523–546 (2024). https://doi.org/10.1007/s11090-023-10428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10428-6

Keywords

Navigation