Skip to main content
Log in

Pathological and Physiological High-frequency Oscillations on Electroencephalography in Patients with Epilepsy

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

High-frequency oscillations (HFOs) encompass ripples (80 Hz–200 Hz) and fast ripples (200 Hz–600 Hz), serving as a promising biomarker for localizing the epileptogenic zone in epilepsy. Spontaneous fast ripples are always pathological, while ripples may be physiological or pathological. Distinguishing physiological from pathological ripples is important not only for designating epileptogenic brain regions, but also for investigations that study ripples in the context of memory encoding, consolidation, and recall in patients with epilepsy. Many studies have sought to identify distinguishing features between pathological and physiological ripples over the past two decades. Physiological and pathological ripples differ with respect to their spatial location, cellular mechanisms, morphology, and coupling with background electroencephalographic activity. Retrospective studies have demonstrated that differentiating between pathological and physiological ripples can improve surgical outcome prediction. In this review, we summarize the characteristics, differences, and applications of pathological and physiological HFOs and discuss strategies for their clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88: 296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sultana B, Panzini MA, Veilleux Carpentier A, Comtois J, Rioux B, Gore G, et al. Incidence and prevalence of drug-resistant epilepsy: A systematic review and meta-analysis. Neurology 2021, 96: 805–817.

    Article  PubMed  Google Scholar 

  3. Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W. The epileptogenic zone: General principles. Epileptic Disord 2006, 8: S1–S9.

    PubMed  Google Scholar 

  4. Frauscher B, Bartolomei F, Kobayashi K, Cimbalnik J, van’t Klooster MA, Rampp S, et al. High-frequency oscillations: The state of clinical research. Epilepsia 2017, 58: 1316–1329.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen Z, Maturana MI, Burkitt AN, Cook MJ, Grayden DB. High-frequency oscillations in epilepsy: What have we learned and what needs to be addressed. Neurology 2021, 96: 439–448.

    Article  PubMed  Google Scholar 

  6. Jacobs J, LeVan P, Chander R, Hall J, Dubeau F, Gotman J. Interictal high-frequency oscillations (80 Hz–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 2008, 49: 1893–1907.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jacobs J, Zijlmans M, Zelmann R, Chatillon CE, Hall J, Olivier A, et al. High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 2010, 67: 209–220.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zweiphenning W, van’t Klooster MA, van Klink NEC, Leijten FSS, Ferrier CH, Gebbink T, et al. Intraoperative electrocorticography using high-frequency oscillations or spikes to tailor epilepsy surgery in the Netherlands (the HFO trial): A randomised, single-blind, adaptive non-inferiority trial. Lancet Neurol 2022, 21: 982–993.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel J Jr. High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol 2004, 56: 108–115.

    Article  PubMed  Google Scholar 

  10. Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsáki G. High-frequency oscillations in human brain. Hippocampus 1999, 9: 137–142.

    Article  CAS  PubMed  Google Scholar 

  11. Bragin A, Mody I, Wilson CL, Engel J Jr. Local generation of fast ripples in epileptic brain. J Neurosci 2002, 22: 2012–2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bragin A, Engel J, Wilson CL, Fried I, Mathern GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 1999, 40: 127–137.

    Article  CAS  PubMed  Google Scholar 

  13. Jiruska P, Alvarado-Rojas C, Schevon CA, Staba R, Stacey W, Wendling F, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia 2017, 58: 1330–1339.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frauscher B, von Ellenrieder N, Zelmann R, Rogers C, Nguyen DK, Kahane P, et al. High-frequency oscillations in the normal human brain. Ann Neurol 2018, 84: 374–385.

    Article  PubMed  Google Scholar 

  15. Li L, Kumar U, You J, Zhou Y, Weiss SA, Engel J, et al. Spatial and temporal profile of high-frequency oscillations in posttraumatic epileptogenesis. Neurobiol Dis 2021, 161: 105544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bragin A, Li L, Almajano J, Alvarado-Rojas C, Reid AY, Staba RJ, et al. Pathologic electrographic changes after experimental traumatic brain injury. Epilepsia 2016, 57: 735–745.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Buzsáki G, Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol 2012, 98: 241–249.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frauscher B, von Ellenrieder N, Zelmann R, Doležalová I, Minotti L, Olivier A, et al. Atlas of the normal intracranial electroencephalogram: Neurophysiological awake activity in different cortical areas. Brain 2018, 141: 1130–1144.

    Article  PubMed  Google Scholar 

  19. Zweiphenning WJEM, von Ellenrieder N, Dubeau F, Martineau L, Minotti L, Hall JA, et al. Correcting for physiological ripples improves epileptic focus identification and outcome prediction. Epilepsia 2022, 63: 483–496.

    Article  PubMed  Google Scholar 

  20. Engel J, Bragin A, Staba R, Mody I. High-frequency oscillations: What is normal and what is not? Epilepsia 2009, 50: 598–604.

    Article  PubMed  Google Scholar 

  21. Frauscher B, Gotman J. How can I disentangle physiological and pathological high-frequency oscillations. In: Studies in Neuroscience Psychology and Behavioral Economics, Springer, Cham, 2023, pp 377–388.

    Google Scholar 

  22. Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, et al. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022, 13: 6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zijlmans M, Worrell GA, Dümpelmann M, Stieglitz T, Barborica A, Heers M, et al. How to record high-frequency oscillations in epilepsy: A practical guideline. Epilepsia 2017, 58: 1305–1315.

    Article  PubMed  Google Scholar 

  24. Noorlag L, van Klink NEC, Kobayashi K, Gotman J, Braun KPJ, Zijlmans M. High-frequency oscillations in scalp EEG: A systematic review of methodological choices and clinical findings. Clin Neurophysiol 2022, 137: 46–58.

    Article  PubMed  Google Scholar 

  25. Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B. Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin Neurophysiol 2007, 118: 1134–1143.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Spring AM, Pittman DJ, Aghakhani Y, Jirsch J, Pillay N, Bello-Espinosa LE, et al. Interrater reliability of visually evaluated high frequency oscillations. Clin Neurophysiol 2017, 128: 433–441.

    Article  PubMed  Google Scholar 

  27. Nariai H, Wu JY, Bernardo D, Fallah A, Sankar R, Hussain SA. Interrater reliability in visual identification of interictal high-frequency oscillations on electrocorticography and scalp EEG. Epilepsia Open 2018, 3: 127–132.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bénar CG, Chauvière L, Bartolomei F, Wendling F. Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on “false” ripples. Clin Neurophysiol 2010, 121: 301–310.

    Article  PubMed  Google Scholar 

  29. Chaibi S, Lajnef T, Sakka Z, Samet M, Kachouri A. A reliable approach to distinguish between transient with and without HFOs using TQWT and MCA. J Neurosci Methods 2014, 232: 36–46.

    Article  PubMed  Google Scholar 

  30. Weiss SA, Berry B, Chervoneva I, Waldman Z, Guba J, Bower M, et al. Visually validated semi-automatic high-frequency oscillation detection aides the delineation of epileptogenic regions during intra-operative electrocorticography. Clin Neurophysiol 2018, 129: 2089–2098.

    Article  PubMed  Google Scholar 

  31. Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015, 25: 1073–1188.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Henin S, Shankar A, Borges H, Flinker A, Doyle W, Friedman D, et al. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain 2021, 144: 1590–1602.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Norman Y, Yeagle EM, Khuvis S, Harel M, Mehta AD, Malach R. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 2019, 365: eaax1030.

    Article  CAS  PubMed  Google Scholar 

  34. Vaz AP, Inati SK, Brunel N, Zaghloul KA. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 2019, 363: 975–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsumoto A, Brinkmann BH, Matthew Stead S, Matsumoto J, Kucewicz MT, Marsh WR, et al. Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol 2013, 110: 1958–1964.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Frauscher B, von Ellenrieder N, Ferrari-Marinho T, Avoli M, Dubeau F, Gotman J. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain 2015, 138: 1629–1641.

    Article  PubMed  PubMed Central  Google Scholar 

  37. von Ellenrieder N, Frauscher B, Dubeau F, Gotman J. Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80–500 Hz). Epilepsia 2016, 57: 869–878.

    Article  Google Scholar 

  38. Song I, Orosz I, Chervoneva I, Waldman ZJ, Fried I, Wu C, et al. Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy. Epilepsia 2017, 58: 1972–1984.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen C, Wang Y, Ye L, Xu J, Ming W, Liu X, et al. A region-specific modulation of sleep slow waves on interictal epilepsy markers in focal epilepsy. Epilepsia 2023, 64: 973–985.

    Article  PubMed  Google Scholar 

  40. Kerber K, Dümpelmann M, Schelter B, Le Van P, Korinthenberg R, Schulze-Bonhage A, et al. Differentiation of specific ripple patterns helps to identify epileptogenic areas for surgical procedures. Clin Neurophysiol 2014, 125: 1339–1345.

    Article  PubMed  Google Scholar 

  41. de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol 2001, 63: 541–567.

    Article  PubMed  Google Scholar 

  42. Pail M, Cimbálník J, Roman R, Daniel P, Shaw DJ, Chrastina J, et al. High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task. Sci Rep 2020, 10: 18147.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang S, Wang IZ, Bulacio JC, Mosher JC, Gonzalez-Martinez J, Alexopoulos AV, et al. Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy. Epilepsia 2013, 54: 370–376.

    Article  PubMed  Google Scholar 

  44. von Ellenrieder N, Dubeau F, Gotman J, Frauscher B. Physiological and pathological high-frequency oscillations have distinct sleep-homeostatic properties. Neuroimage Clin 2017, 14: 566–573.

    Article  Google Scholar 

  45. Ferrari-Marinho T, Perucca P, Mok K, Olivier A, Hall J, Dubeau F, et al. Pathologic substrates of focal epilepsy influence the generation of high-frequency oscillations. Epilepsia 2015, 56: 592–598.

    Article  PubMed  Google Scholar 

  46. Jefferys JGR, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, et al. Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 2012, 98: 250–264.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: Network and intracellular mechanisms. J Neurosci 1995, 15: 30–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schomburg EW, Anastassiou CA, Buzsáki G, Koch C. The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci 2012, 32: 11798–11811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bragin A, Benassi SK, Kheiri F, Engel J Jr. Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia 2011, 52: 45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weiss SA, Sheybani L, Seenarine N, Fried I, Wu C, Sharan A, et al. Delta oscillation coupled propagating fast ripples precede epileptiform discharges in patients with focal epilepsy. Neurobiol Dis 2022, 175: 105928.

    Article  PubMed  Google Scholar 

  51. Cimbalnik J, Brinkmann B, Kremen V, Jurak P, Berry B, Gompel JV, et al. Physiological and pathological high frequency oscillations in focal epilepsy. Ann Clin Transl Neurol 2018, 5: 1062–1076.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karpychev V, Balatskaya A, Utyashev N, Pedyash N, Zuev A, Dragoy O, et al. Epileptogenic high-frequency oscillations present larger amplitude both in mesial temporal and neocortical regions. Front Hum Neurosci 2022, 16: 984306.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Malinowska U, Badier JM, Gavaret M, Bartolomei F, Chauvel P, Bénar CG. Interictal networks in magnetoencephalography. Hum Brain Mapp 2014, 35: 2789–2805.

    Article  PubMed  Google Scholar 

  54. Alkawadri R, Gaspard N, Goncharova II, Spencer DD, Gerrard JL, Zaveri H, et al. The spatial and signal characteristics of physiologic high frequency oscillations. Epilepsia 2014, 55: 1986–1995.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu S, Gurses C, Sha Z, Quach MM, Sencer A, Bebek N, et al. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy. Brain 2018, 141: 713–730.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Guragain H, Cimbalnik J, Stead M, Groppe DM, Berry BM, Kremen V, et al. Spatial variation in high-frequency oscillation rates and amplitudes in intracranial EEG. Neurology 2018, 90: e639–e646.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alvarado-Rojas C, Huberfeld G, Baulac M, Clemenceau S, Charpier S, Miles R, et al. Different mechanisms of ripple-like oscillations in the human epileptic subiculum. Ann Neurol 2015, 77: 281–290.

    Article  PubMed  Google Scholar 

  58. Crépon B, Navarro V, Hasboun D, Clemenceau S, Martinerie J, Baulac M, et al. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 2010, 133: 33–45.

    Article  PubMed  Google Scholar 

  59. Urrestarazu E, Chander R, Dubeau F, Gotman J. Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain 2007, 130: 2354–2366.

    Article  PubMed  Google Scholar 

  60. Karoly PJ, Freestone DR, Boston R, Grayden DB, Himes D, Leyde K, et al. Interictal spikes and epileptic seizures: Their relationship and underlying rhythmicity. Brain 2016, 139: 1066–1078.

    Article  PubMed  Google Scholar 

  61. de Curtis M, de Curtis M, Avoli M. GABAergic networks jump-start focal seizures. Epilepsia 2016, 57: 679–687.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weiss SA, Orosz I, Salamon N, Moy S, Wei L, Van’t Klooster MA, et al. Ripples on spikes show increased phase-amplitude coupling in mesial temporal lobe epilepsy seizure-onset zones. Epilepsia 2016, 57: 1916–1930.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jacobs J, Vogt C, LeVan P, Zelmann R, Gotman J, Kobayashi K. The identification of distinct high-frequency oscillations during spikes delineates the seizure onset zone better than high-frequency spectral power changes. Clin Neurophysiol 2016, 127: 129–142.

    Article  PubMed  Google Scholar 

  64. Schönberger J, Knopf A, Klotz KA, Dümpelmann M, Schulze-Bonhage A, Jacobs J. Distinction of physiologic and epileptic ripples: An electrical stimulation study. Brain Sci 2021, 11: 538.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mooij AH, Huiskamp GJM, Aarts E, Ferrier CH, Braun KPJ, Zijlmans M. Accurate differentiation between physiological and pathological ripples recorded with scalp-EEG. Clin Neurophysiol 2022, 143: 172–181.

    Article  PubMed  Google Scholar 

  66. Cai Z, Sohrabpour A, Jiang H, Ye S, Joseph B, Brinkmann BH, et al. Noninvasive high-frequency oscillations riding spikes delineates epileptogenic sources. Proc Natl Acad Sci U S A 2021, 118: e2011130118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kramer MA, Ostrowski LM, Song DY, Thorn EL, Stoyell SM, Parnes M, et al. Scalp recorded spike ripples predict seizure risk in childhood epilepsy better than spikes. Brain 2019, 142: 1296–1309.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Weiss SA, Fried I, Engel J, Sperling MR, Wong RKS, Nir Y, et al. Fast ripples reflect increased excitability that primes epileptiform spikes. Brain Commun 2023, 5: fcad242.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Melani F, Zelmann R, Mari F, Gotman J. Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions. Clin Neurophysiol 2013, 124: 1507–1516.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, et al. Regional slow waves and spindles in human sleep. Neuron 2011, 70: 153–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiss SA, Song I, Leng M, Pastore T, Slezak D, Waldman Z, et al. Ripples have distinct spectral properties and phase-amplitude coupling with slow waves, but indistinct unit firing, in human epileptogenic hippocampus. Front Neurol 2020, 11: 174.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kuroda N, Sonoda M, Miyakoshi M, Nariai H, Jeong JW, Motoi H, et al. Objective interictal electrophysiology biomarkers optimize prediction of epilepsy surgery outcome. Brain Commun 2021, 3: fcabf42.

    Article  Google Scholar 

  73. Ujma PP, Halász P, Kelemen A, Fabó D, Erőss L. Epileptic interictal discharges are more frequent during NREM slow wave downstates. Neurosci Lett 2017, 658: 37–42.

    Article  CAS  PubMed  Google Scholar 

  74. Hay YA, Deperrois N, Fuchsberger T, Quarrell TM, Koerling AL, Paulsen O. Thalamus mediates neocortical Down state transition via GABAB-receptor-targeting interneurons. Neuron 2021, 109: 2682–2690.

    Article  CAS  PubMed  Google Scholar 

  75. Weiss SA, Fried I, Engel J, Bragin A, Wang S, Sperling MR, et al. Pathological neurons generate ripples at the UP-DOWN transition disrupting information transfer. medRxiv 2023, 2023.08.01.23293365. https://doi.org/10.1101/2023.08.01.23293365.

  76. Nagasawa T, Juhász C, Rothermel R, Hoechstetter K, Sood S, Asano E. Spontaneous and visually driven high-frequency oscillations in the occipital cortex: Intracranial recording in epileptic patients. Hum Brain Mapp 2012, 33: 569–583.

    Article  PubMed  Google Scholar 

  77. Nonoda Y, Miyakoshi M, Ojeda A, Makeig S, Juhász C, Sood S, et al. Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves. Clin Neurophysiol 2016, 127: 2489–2499.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Clemens Z, Mölle M, Erőss L, Barsi P, Halász P, Born J. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 2007, 130: 2868–2878.

    Article  PubMed  Google Scholar 

  79. Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci 2015, 18: 1679–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bruder JC, Dümpelmann M, Piza DL, Mader M, Schulze-Bonhage A, Jacobs-Le Van J. Physiological ripples associated with sleep spindles differ in waveform morphology from epileptic ripples. Int J Neural Syst 2017, 27: 1750011.

    Article  PubMed  Google Scholar 

  81. Bruder JC, Schmelzeisen C, Lachner-Piza D, Reinacher P, Schulze-Bonhage A, Jacobs J. Physiological ripples associated with sleep spindles can be identified in patients with refractory epilepsy beyond mesio-temporal structures. Front Neurol 2021, 12: 612293.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kandel A, Buzsáki G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci 1997, 17: 6783–6797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mak-McCully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, et al. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat Commun 2017, 8: 15499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang S, So NK, Jin B, Wang IZ, Bulacio JC, Enatsu R, et al. Interictal ripples nested in epileptiform discharge help to identify the epileptogenic zone in neocortical epilepsy. Clin Neurophysiol 2017, 128: 945–951.

    Article  PubMed  Google Scholar 

  85. Migliorelli C, Romero S, Bachiller A, Aparicio J, Alonso JF, Mañanas MA, et al. Improving the ripple classification in focal pediatric epilepsy: Identifying pathological high-frequency oscillations by Gaussian mixture model clustering. J Neural Eng 2021, 18: 0460f2. https://doi.org/10.1088/1741-2552/ac1d31.

    Article  Google Scholar 

  86. Weiss SA, Waldman Z, Raimondo F, Slezak D, Donmez M, Worrell G, et al. Localizing epileptogenic regions using high-frequency oscillations and machine learning. Biomark Med 2019, 13: 409–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nevalainen P, von Ellenrieder N, Klimeš P, Dubeau F, Frauscher B, Gotman J. Association of fast ripples on intracranial EEG and outcomes after epilepsy surgery. Neurology 2020, 95: e2235–e2245.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Roehri N, Pizzo F, Lagarde S, Lambert I, Nica A, McGonigal A, et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann Neurol 2018, 83: 84–97.

    Article  CAS  PubMed  Google Scholar 

  89. Motoi H, Jeong JW, Juhász C, Miyakoshi M, Nakai Y, Sugiura A, et al. Quantitative analysis of intracranial electrocorticography signals using the concept of statistical parametric mapping. Sci Rep 2019, 9: 17385.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Weiss SA, Pastore T, Orosz I, Rubinstein D, Gorniak R, Waldman Z, et al. Graph theoretical measures of fast ripples support the epileptic network hypothesis. Brain Commun 2022, 4: fcac101.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Frauscher B, von Ellenrieder N, Dubeau F, Gotman J. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans. Epilepsia 2016, 57: 879–888.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review was supported by the National Natural Science Foundation of China (82171437 and 81971207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Chen, C., Weiss, S.A. et al. Pathological and Physiological High-frequency Oscillations on Electroencephalography in Patients with Epilepsy. Neurosci. Bull. (2023). https://doi.org/10.1007/s12264-023-01150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-023-01150-6

Keywords

Navigation