Skip to main content
Log in

Investigating hydrophobic environment in alkyl-group-functionalized silica particle with various chain lengths using absorption microspectroscopy

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A well-known solvatochromic dye, Reichardt’s dye (R-dye), was used to evaluate the hydrophobicity of alkyl-group-functionalized silica particles (ASPs) with different chain lengths. The absorption spectra of R-dye were measured in a single ASP in a mixed solution of water and an organic solvent (methanol (MeOH), ethanol (EtOH), acetonitrile (ACN), tetrahydrofuran (THF), or N,N-dimethylformamide (DMF)) using absorption microspectroscopy. The polarity parameter in the ASPs (ET), determined by the absorption maximum, was observed to be smaller than those in bulk solutions, indicating that R-dye was present in a more hydrophobic environment. In EtOH, THF, and DMF, R-dye was distributed within the alkyl chain layer including the organic solvent. An increase in the organic solvent content of the bulk solution led to a higher organic solvent concentration in the alkyl chain layer, resulting in a decrease in ET. In MeOH and ACN, the R-dye was distributed within the alkyl chain layer and concentrated phase. Moreover, with the increase in the organic molecule content, the distribution of R-dye in the concentrated phase became dominant in MeOH and ACN system, leading to an increase in the ET value. The findings presented in this paper are expected to attract the attention of a wide range of researchers in chromatography.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated in this study are provided in the manuscript and Supplementary Information.

References

  1. R. Morley, M. Minceva, J. Chromatogr. A 1617, 460479 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. R. Morley, M. Minceva, Annu. Rev. Chem. Biomol. Eng. 12, 495–518 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. K. Ciura, S. Dziomba, J. Nowakowska, M.J. Markuszewski, J. Chromatogr. A 1520, 9–22 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. M. Sajewicz, T. Kowalska, J. Planar Chromatogr. Modern TLC 30, 333–339 (2017)

    Article  CAS  Google Scholar 

  5. S. Fekete, A. Beck, J.L. Veuthey, D. Guillarme, J. Pharm. Biomed. Anal. 113, 43–55 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. R. Michalski, Separations 5, 16 (2018)

    Article  Google Scholar 

  7. L. Pitkanen, A.M. Striegel, Trends Anal. Chem. 80, 311–320 (2016)

    Article  CAS  Google Scholar 

  8. E. Lubomirsky, A. Khodabandeh, J. Preis, M. Susewind, T. Hofe, E.F. Hilder, R.D. Arrua, Anal. Chim. Acta 1151, 338244 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. E.L. Rodriguez, S. Poddar, S. Iftekhar, K. Suh, A.G. Woolfork, S. Ovbude, A. Pekarek, M. Walters, S. Lott, D.S. Hage, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1157, 122332 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Buszewski, Z. Safaei, S. Studzińska, Open Chem. 13, 1286–1292 (2015)

    Article  CAS  Google Scholar 

  11. A. Shimada, T. Haraga, A. Hoshi, Y. Kameo, M. Nakashima, K. Takahashi, J. Radioanal. Nucl. Chem. 286, 765–770 (2010)

    Article  CAS  Google Scholar 

  12. E. Jellum, J. Chromatogr. 452, 435–441 (1988)

    Article  CAS  PubMed  Google Scholar 

  13. S.E. Evans, B. Kasprzyk-Hordern, Trends Environ. Anal. Chem. 1, e34–e51 (2014)

    Article  CAS  Google Scholar 

  14. J.F. Van Bocxlaer, K.M. Clauwaert, W.E. Lambert, D.L. Deforce, E.G. Van den Eeckhout, A.P. De Leenheer, Mass Spectrom. Rev. 19, 165–214 (2000)

    Article  PubMed  Google Scholar 

  15. P. Szabelski, A. Cavazzini, K. Kaczmarski, X. Liu, J.C. Van Horn, G. Guiochon, J. Chromatogr. A 950, 41–53 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. H. Kim, F. Gritti, G. Guiochon, J. Chromatogr. A 1049, 25–36 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. F. Gritti, G. Guiochon, J. Chromatogr. A 1028, 197–210 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. F. Gritti, G. Guiochon, J. Chromatogr. A 1038, 53–66 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. J.G. Dorsey, Chem. Rev. 89, 331–346 (1989)

    Article  CAS  Google Scholar 

  20. J. Rybka, A. Höltzel, U. Tallarek, J. Phys. Chem. C 121, 17907–17920 (2017)

    Article  CAS  Google Scholar 

  21. R.K. Lindsey, J.L. Rafferty, B.L. Eggimann, J.I. Siepmann, M.R. Schure, J. Chromatogr. A 1287, 60–82 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. J. Rybka, A. Höltzel, A. Steinhoff, U. Tallarek, J. Phys. Chem. C 123, 3672–3681 (2019)

    Article  CAS  Google Scholar 

  23. J. Rybka, A. Höltzel, N. Trebel, U. Tallarek, J. Phys. Chem. C 123, 21617–21628 (2019)

    Article  CAS  Google Scholar 

  24. C. Reichardt, Chem. Rev. 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

  25. A. Miyagawa, J. Eng, T. Okada, Y. Inoue, T.J. Penfold, G. Fukuhara, ACS Omega 5, 897–903 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. S.J. Tavener, J.H. Clark, G.W. Gray, P.A. Heath, D.J. Macquarrie, Chem. Commun. 1147–1148 (1997). https://doi.org/10.1039/a701681f

  27. Z.M. Alghoul, P.B. Ogden, J.G. Dorsey, J. Chromatogr. A 1486, 42–49 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. K. Nakatani, T. Sekine, Langmuir 16, 9256–9260 (2000)

    Article  CAS  Google Scholar 

  29. H. Kakizaki, C. Aonuma, K. Nakatani, J. Colloid Interface Sci. 307, 166–171 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. K. Chikama, T. Negishi, K. Nakatani, Bull. Chem. Soc. Jpn 76, 295–299 (2003)

    Article  CAS  Google Scholar 

  31. C. Reichardt, T. Welton, Solvents and solvent effect in organic chemistry (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  32. F. Gritti, G. Guichon, Anal. Chem. 77, 4257–4272 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. K.A. Lippa, L.C. Sander, R.D. Mountain, Anal. Chem. 77, 7862–7871 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. K.A. Lippa, L.C. Sander, R.D. Mountain, Anal. Chem. 77, 7852–7861 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. Y.V. Kazakevich, R. LoBrutto, F. Chan, T. Patel, J. Chromatogr. A 913, 75–87 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Early-Career Scientists (23K13771) from the Japan Society for the Promotion of Science (A.M.).

Funding

Japan Society for the Promotion of Science,No. 23K13771,Akihisa Miyagawa

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Miyagawa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7163 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagawa, A., Yamada, K. & Nakatani, K. Investigating hydrophobic environment in alkyl-group-functionalized silica particle with various chain lengths using absorption microspectroscopy. ANAL. SCI. 40, 93–99 (2024). https://doi.org/10.1007/s44211-023-00434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00434-1

Keywords

Navigation