Skip to main content
Log in

Investigation of discharging flow behavior of powder in the conical feeding silo: effect of BINSERT-type aided flowing device

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In the fluidization process of nylon powder, maintaining a uniform flow of powder in the feed silo is crucial to reduce powder agglomeration and facilitate the fluidization process. In this study, BINSERT was applied to improve the flow properties of powder in the feeding silo. The discharge process of nylon powder in silos equipped with different dip angles of BINSERT was simulated using discrete element method (DEM). The DEM model considered fine-scale van der Waals forces, and a novel slicing method was employed to simplify the DEM model. The effect of BINSERT on powder flow behavior was systematically analyzed. The results indicate that the powder exhibits a more uniform velocity distribution as the BINSERT dip angle increases. The flow pattern gradually transitions from Funnel flow to Mass flow. Furthermore, the installation of BINSERT improves the pressure distribution on the silo walls, enhancing the reliability of the silo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wu B, Zhu K, Wang F, Wen X, Li M, Yang Y, Yang J (2022) Development of PA6/GO microspheres with good processability for SLS 3D printing. Polym Eng Sci 62:1700–1709. https://doi.org/10.1002/pen.25957

    Article  Google Scholar 

  2. Ng WK, Tan RBH (2008) Case study: optimization of an industrial fluidized bed drying process for large Geldart Type D nylon particles. Powder Technol 180:289–295. https://doi.org/10.1016/j.powtec.2007.02.020

    Article  Google Scholar 

  3. Nimvari MI, Sowinski A, Mehrani P (2022) Effect of temperature on triboelectrifcation of polyethylene particles in a pilot-scale pressurized gas-solid fluidized bed. Powder Technol 405:117524. https://doi.org/10.1016/j.powtec.2018.01.015

    Article  Google Scholar 

  4. Szabó V, Poós T (2022) Modeling of heat and mass transfer in fluidized bed dryers using the volumetric heat transfer coefficient. Part 2: calculation algorithm based on the heat and mass transfer model. Drying Technol 40:2345–2359. https://doi.org/10.1080/07373937.2021.1938111

    Article  Google Scholar 

  5. Zhang J, Tan Y, Xiao X, Jiang S (2022) Comparison of roller-spreading and blade-spreading processes in powder-bed additive manufacturing by DEM simulations. Particuology 66:48–58. https://doi.org/10.1016/j.partic.2021.07.005

    Article  Google Scholar 

  6. Zhang D, Dong S, Guo H, Yang X, Cui L, Liu X (2022) Flow behavior of granular material during funnel and mixed flow discharges: a comparative analysis. Powder Technol 396:127–138. https://doi.org/10.1016/j.powtec.2021.10.047

    Article  Google Scholar 

  7. Hendrickson GG (2006) Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem Eng Sci 61:1041–1064. https://doi.org/10.1016/j.ces.2005.07.029

    Article  Google Scholar 

  8. Sleppy JA, Puri V (1996) Size-segregation of granulated sugar during flow. Trans ASAE 39:1433–1439. https://doi.org/10.13031/2013.27636

    Article  Google Scholar 

  9. Zhang D, Yang X, Guo H, Tian Z, Liu X (2023) Why the presence of insert above the outlet can enhance silo discharge: a tentative answer. Powder Technol 421:118384. https://doi.org/10.1016/j.powtec.2023.118384

    Article  Google Scholar 

  10. Krzyżanowski J, Tejchman J, Wójcik M (2021) Modelling of full-scale silo experiments with flow correcting inserts using material point method (MPM) based on hypoplasticity. Powder Technol 392:375–392. https://doi.org/10.1016/j.powtec.2021.06.059

    Article  Google Scholar 

  11. Chung Y (2023) Granular stresses in granular flows subjected to different obstacles. Int J Mech Sci 247:108190. https://doi.org/10.1016/j.ijmecsci.2023.108190

    Article  Google Scholar 

  12. Irvine SK, Fullard LA, Holland DJ, Clarke DA, Lynch TA, Lagrée PY (2023), The μ (I) model and extensions applied to granular material in silo with inserts, arXiv preprint arXiv:2302.12550, (2023). https://doi.org/10.48550/arXiv.2302.12550

  13. Lu H, Ruan H, Poletto M, Guo X, Liu H (2023) Study on fine powder discharged from hoppers modified with insert. Powder Technol 423:118498. https://doi.org/10.1016/j.powtec.2023.118498

    Article  Google Scholar 

  14. Ali N, Al-Juwaya T, Al-Dahhan MH (2017) An advanced evaluation of the mechanistic scale-up methodology of gas–solid spouted beds using radioactive particle tracking. Particuology 34:48–60. https://doi.org/10.1016/j.partic.2016.11.005

    Article  Google Scholar 

  15. Larsson S, Gustafsson G, Häggblad H-Å, Jonsén P (2017) Experimental and numerical study of potassium chloride flow using smoothed particle hydrodynamics. Miner Eng 116:88–100. https://doi.org/10.1016/j.mineng.2017.11.003

    Article  Google Scholar 

  16. Qin C, Tang J, Xiao-yi Q, Xi Z, Zhao L (2018) Improving particle flow in liquid-solid countercurrent extraction tower by insert structure optimization: a combined study on experiments and DEM simulations. Powder Technol 328:275–287. https://doi.org/10.1016/j.powtec.2018.01.015

    Article  Google Scholar 

  17. Mathews JC, Wu W (2016) Model tests of silo discharge in a geotechnical centrifuge. Powder Technol 293:3–14. https://doi.org/10.1016/j.powtec.2015.11.025

    Article  Google Scholar 

  18. Slominski C, Niedostatkiewicz M, Tejchman J (2007) Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technol 173:1–18. https://doi.org/10.1016/j.powtec.2006.11.018

    Article  Google Scholar 

  19. Wójcik M, Tejchman J, Enstad GG (2012) Confined granular flow in silos with inserts—full-scale experiments. Powder Technol 222:15–36. https://doi.org/10.1016/j.powtec.2012.01.031

    Article  Google Scholar 

  20. Härtl J, Ooi JY, Rotter JM, Wójcik M, Ding S, Enstad GG (2008) The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chem Eng Res Des 86:370–378. https://doi.org/10.1016/j.cherd.2007.07.001

    Article  Google Scholar 

  21. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  22. Si L, Zhang T, Zhou M, Li M, Zhang Y, Zhou H (2021) Numerical simulation of the flow behavior and powder spreading mechanism in powder bed-based additive manufacturing. Powder Technol. https://doi.org/10.1016/j.powtec.2021.09.010

    Article  Google Scholar 

  23. Xiao X, Li Y, Peng RT, Gao J, Hu C (2022) Parameter calibration and mixing uniformity of irregular gravel materials in a rotating drum. Powder Technol. https://doi.org/10.1016/j.powtec.2022.118074

    Article  Google Scholar 

  24. Xiao X, Tan Y, Zhang H, Deng R, Jiang S (2017) Experimental and DEM studies on the particle mixing performance in rotating drums: effect of area ratio. Powder Technol 314:182–194. https://doi.org/10.1016/j.powtec.2017.01.044

    Article  Google Scholar 

  25. Jiang S, Ye Y, He M, Duan C, Liu S, Liu J, Xiao X, Zhang H, Tan Y (2019) Mixing uniformity of irregular sand and gravel materials in a rotating drum with determination of contact model parameters. Powder Technol 354:377–391. https://doi.org/10.1016/j.powtec.2019.06.005

    Article  Google Scholar 

  26. Gao W, Feng Y (2020) A coupled 3D discrete elements/isogeometric method for particle/structure interaction problems. Comput Part Mech 7:869–880. https://doi.org/10.1007/s40571-019-00267-8

    Article  Google Scholar 

  27. Houhamdi S, Vazquez EG, Djeghaba K (2021) Numerical simulations of pressures applied on a cylindrical silo with hopper due to a granular material by using FEM and DEM. Synthèse Revue des Sci et de la Technol 27:65–74

    Google Scholar 

  28. Liao CC, Chung YC, Kuo T-C (2022) Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge- Part II: exploration of internal dynamic properties. Powder Technol. https://doi.org/10.1016/j.powtec.2022.117221

    Article  Google Scholar 

  29. Hertz (1881) On the contact of elastic solids. Crelle’s J, 92: 156–171

  30. Mindlin RD (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20:327–334. https://doi.org/10.1115/1.4010702

    Article  MathSciNet  MATH  Google Scholar 

  31. Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Phys D 4:1058–1072. https://doi.org/10.1016/S0031-8914(37)80203-7

    Article  Google Scholar 

  32. González-Montellano C, Ramírez A, Fuentes J, Ayuga F (2012) Numerical effects derived from en masse filling of agricultural silos in DEM simulations. Comput Electron Agric 81:113–123. https://doi.org/10.1016/j.compag.2011.11.013

    Article  Google Scholar 

  33. Burns SJ, Piiroinen PT, Hanley KJ (2019) Critical time step for DEM simulations of dynamic systems using a Hertzian contact model. Int J Numer Meth Eng 119:432–451. https://doi.org/10.1002/nme.6056

    Article  MathSciNet  MATH  Google Scholar 

  34. Li Y, Gui N, Yang X, Tu J, Jiang S (2016) Effect of friction on pebble flow pattern in pebble bed reactor. Ann Nucl Energy 94:32–43. https://doi.org/10.1016/j.anucene.2016.02.022

    Article  Google Scholar 

  35. Chung Y, Kuo T, Hsiau S (2022) Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge-Part I: exploration of transport properties. Powder Technol 400:117220. https://doi.org/10.1016/j.powtec.2022.117220

    Article  Google Scholar 

  36. Jiang S, Duan C, Ye Y, Tang C, Chen X (2019) Discrete element simulation of factors affecting the fluidity of nylon powder. Math Probl Eng. https://doi.org/10.1155/2019/1082504

    Article  Google Scholar 

  37. Tan YQ, Zheng JH, Gao W, Jiang SQ, Feng Y (2016) The effect of powder flowability in the selective laser sintering process, In: Proceedings of the 7th international conference on discrete element methods. https://doi.org/10.1007/978-981-10-1926-5_65

  38. Xiao X, Jin Y, Tan Y, Jiang S, Chen R, Peng RT (2022) Modeling and numerical research on powder paving process of nylon powder in selective laser sintering. Comput Part Mech 10:415–425. https://doi.org/10.1007/s40571-022-00505-6

    Article  Google Scholar 

  39. Ketterhagen WR, Hancock BC (2010) Optimizing the design of eccentric feed hoppers for tablet presses using DEM. Comput Chem Eng 34:1072–1081. https://doi.org/10.1016/j.compchemeng.2010.04.016

    Article  Google Scholar 

  40. Aguirre MA, Grande JG, Calvo A, Pugnaloni LA, Géminard J-C (2011) Granular flow through an aperture: pressure and flow rate are independent. Phys Rev E Stat Nonlinear Soft Matter Phys 83(6 Pt 1):061305. https://doi.org/10.1103/PhysRevE.83.061305

    Article  Google Scholar 

  41. Ramírez Á, Nielsen J, Ayuga F (2010) Pressure measurements in steel silos with eccentric hoppers. Powder Technol 201:7–20. https://doi.org/10.1016/j.powtec.2010.02.027

    Article  Google Scholar 

  42. Couto A, Ruiz A, Aguado P (2013) Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge. Comparison with Eurocode 1 part 4. Powder Technol 237:450–467. https://doi.org/10.1016/j.powtec.2012.12.030

    Article  Google Scholar 

  43. Zheng Q, Yu A (2015) Finite element investigation of the flow and stress patterns in conical hopper during discharge. Chem Eng Sci 129:49–57. https://doi.org/10.1016/j.ces.2015.02.022

    Article  Google Scholar 

  44. Martínez MA, Alfaro I, Doblaré M (2002) Simulation of axisymmetric discharging in metallic silos. Analysis of the induced pressure distribution and comparison with different standards. Eng Struct 24:1561–1574. https://doi.org/10.1016/S0141-0296(02)00100-1

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China [grant numbers 51975504, 52375466]; the Provincial Natural Science Foundation of Hunan for Distinguished Young Scholars [grant number 2022JJ10045]; the Excellent Youth Project of Education Department of Hunan Province [Grant Number 22B0109]; Youth Science Foundation of Guangdong Provincial Regional Joint Fund [Grant Number 2022A1515110862].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruitao Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Li, B., Peng, R. et al. Investigation of discharging flow behavior of powder in the conical feeding silo: effect of BINSERT-type aided flowing device. Comp. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00683-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00683-x

Keywords

Navigation