Skip to main content
Log in

Bases and interbasis expansions in the generalized MIC–Kepler problem in the continuous spectrum and the scattering problem

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The spherical and parabolic wave functions are calculated for the generalized MIC–Kepler system in the continuous spectrum. It is shown that the coefficients of the parabola–sphere and sphere–parabola expansion are expressed in terms of the generalized hypergeometric function \(_{3}F_2(\ldots\mid 1)\). The quantum mechanical problem of scattering in the generalized MIC–Kepler system is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mardoyan, “The generalized MIC–Kepler system,” J. Math. Phys., 44, 4981–4987 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Zwanziger, “Exactly soluble nonrelativistic model of particles with both electric and magnetic charges,” Phys. Rev., 176, 1480–1488 (1968).

    Article  ADS  Google Scholar 

  3. H. McIntosh and A. Cisneros, “Degeneracy in the presence of a magnetic monopole,” J. Math. Phys., 11, 896–916 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Kustaanheimo, A. Schinzel, H. Davenport, and E. Stiefel, “Perturbation theory of Kepler motion based on spinor regularization,” J. Reine Angew. Math., 1965, 204–219 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Iwai and Y. Uwano, “The quantised MIC–Kepler problem and its symmetry group for negative energies,” J. Phys. A: Math. Gen., 21, 4083–4104 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Nersessian and V. Ter-Antonyan, “ ‘Charge-dyon’ system as the reduced oscillator,” Modern Phys. Lett. A, 9, 2431–2435 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. V. Ter-Antonyan and A. Nersessian, “Quantum oscillator and a bound system of two dyons,” Modern Phys. Lett. A, 10, 2633–2638 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Nersessian, V. Ter-Antonyan, and M. M. Tsulaia, “A note on quantum Bohlin transformation,” Modern Phys. Lett. A, 11, 1605–1610 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. P. Nersessian and V. M. Ter-Antonyan, “Anyons, monopoles, and Coulomb problem,” arXiv: physics/9712027.

  10. M. Kibler, L. G. Mardoyan, and G. S. Pogosyan, “On a generalized Kepler–Coulomb system: Interbasis expansions,” Int. J. Quantum Chem., 52, 1301 (1994).

    Article  Google Scholar 

  11. J. Friš, V. Mandrosov, Ya. A. Smorodinsky, M. Uhíř, and P. Winternitz, “On higher symmetries in quantum mechanics,” Phys. Lett., 16, 354–356 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  12. N. W. Evans, “Super-integrability of the Winternitz system,” Phys. Lett. A, 147, 483–486 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Hartmann, “Die Bewegung eines Körpers in einem ringförmigen Potentialfeld,” Theor. Chim. Acta, 24, 201–206 (1972); H. Hartmann, R. Schuch, and J. Radke, “Die diamagnetische Suszeptibilität eines nicht kugelsymmetrischen Systems,” Theor. Chim. Acta, 42, 1–3 (1976); H. Hartmann and R. Schuch, “Spin-orbit coupling for the motion of a particle in a ring-shaped potential,” Int. J. Quantum Chem., 18, 125–141 (1980); C. Quesne, “A new ring-shaped potential and its dynamical invariance algebra,” J. Phys. A: Math. Gen., 21, 3093–3101 (1988).

    Article  Google Scholar 

  14. L. G. Mardoyan, “Spheroidal analysis of the generalized MIC–Kepler system,” Phys. Atom. Nucl., 68, 1746–1755 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  15. L. G. Mardoyan and M. G. Petrosyan, “Four-dimensional singular oscillator and generalized MIC–Kepler system,” Phys. Atom. Nucl., 70, 572–575 (2007).

    Article  ADS  Google Scholar 

  16. I. Marquette, “Generalized MICZ-Kepler system, duality, polynomial and deformed oscillator algebras,” J. Math. Phys., 51, 102105, 10 pp. (2010); H. Shmavonyan, “\(\mathbb{C}^N\)-Smorodinsky–Winternitz system in a constant magnetic field,” Phys. Lett. A, 383, 1223–1228 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L. G. Mardoyan, “Scattering of Electrons on the Dyon,” Theoret. and Math. Phys., 136, 1110–1118 (2003).

    Article  Google Scholar 

  18. I. E. Tamm, Selected Papers (B. M. Bolotovskii, V. Ya. Frenkel, and R. Peierls), Springer, Berlin (1991).

    Book  Google Scholar 

  19. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York–Toronto–London (1953).

    MATH  Google Scholar 

  20. L. G. Mardoyan, “Ring-Shaped Functions and Wigner \(6j\)-Symbols,” Theoret. and Math. Phys., 146, 248–258 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of theoretical physics, Vol. 3: Quantum mechanics: non-relativistic theory (Addison-Wesley Series in Advanced Physics), Pergamon Press Ltd., London–Paris (1958).

    Google Scholar 

  22. G. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1: The Hypergeometric Function. Legendre Functions, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  23. L. G. Mardoyan, G. S. Pogosyan, A. N. Sisakyan, and V. M. Ter-Antonyan, Quantum Systems with Hidden Symmetry [in Russian], Fizmatlit, Moscow (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Mardoyan.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 285–298 https://doi.org/10.4213/tmf10543.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardoyan, L.G. Bases and interbasis expansions in the generalized MIC–Kepler problem in the continuous spectrum and the scattering problem. Theor Math Phys 217, 1661–1672 (2023). https://doi.org/10.1134/S004057792311003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792311003X

Keywords

Navigation