Skip to main content
Log in

On the spectral theory of linear differential-algebraic equations with periodic coefficients

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the spectral theory of linear differential-algebraic equations (DAEs) for periodic DAEs in canonical form, i.e.,

$$\begin{aligned} J \frac{df}{dt}+Hf=\lambda Wf, \end{aligned}$$

where J is a constant skew-Hermitian \(n\times n\) matrix that is not invertible, both \(H=H(t)\) and \(W=W(t)\) are d-periodic Hermitian \(n\times n\)-matrices with Lebesgue measurable functions as entries, and W(t) is positive semidefinite and invertible for a.e. \(t\in {\mathbb {R}}\) (i.e., Lebesgue almost everywhere). Under some additional hypotheses on H and W, called the local index-1 hypotheses, we study the maximal and the minimal operators L and \(L_0'\), respectively, associated with the differential-algebraic operator \({\mathcal {L}}=W^{-1}(J\frac{d}{dt}+H)\), both treated as an unbounded operators in a Hilbert space \(L^2({\mathbb {R}}; W)\) of weighted square-integrable vector-valued functions. We prove the following: (i) the minimal operator \(L_0'\) is a densely defined and closable operator; (ii) the maximal operator L is the closure of \(L_0'\); (iii) L is a self-adjoint operator on \(L^2({\mathbb {R}}; W)\) with no eigenvalues of finite multiplicity, but may have eigenvalues of infinite multiplicity. Finally, we show that for 1D photonic crystals with passive lossless media, Maxwell’s equations for the electromagnetic fields become, under separation of variables, periodic DAEs in canonical form satisfying our hypotheses so that our spectral theory applies to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Not applicable.

References

  1. Lamour, R., März, R., Winkler, R.: How Floquet theory applies to index 1 differential algebraic equations. J. Math. Anal. Appl. 217(2), 372–394 (1998). https://doi.org/10.1006/jmaa.1997.5714

    Article  MathSciNet  MATH  Google Scholar 

  2. Demir, A.: Floquet theory and non-linear perturbation analysis for oscillators with differential-algebraic equations. Int. J. Circuit Theory Appl. 28(2), 163–185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lamour, R., März, R., Winkler, R.: Stability of periodic solutions of index-2 differential algebraic systems. J. Math. Anal. Appl. 279(2), 475–494 (2003). https://doi.org/10.1016/S0022-247X(03)00024-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Rofe-Beketov, F.S., Kholkin, A.M.: Spectral Analysis of Differential Operators. World Scientific, Hackensack (2005). https://doi.org/10.1142/5788

    Book  MATH  Google Scholar 

  5. Figotin, A., Vitebskiy, I.: Slow light in photonic crystals. Waves Random Complex Media 16(3), 293–382 (2006). https://doi.org/10.1080/17455030600836507

    Article  MathSciNet  MATH  Google Scholar 

  6. Welters, A.: On the mathematics of slow light. PhD thesis, University of California, Irvine (2011)

  7. Shipman, S.P., Welters, A.: Resonance in anisotropic layered media. In: 2012 International Conference on Mathematical Methods in Electromagnetic Theory, pp. 227–232 (2012). https://doi.org/10.1109/MMET.2012.6331235

  8. Shipman, S.P., Welters, A.T.: Resonant electromagnetic scattering in anisotropic layered media. J. Math. Phys. 54(10), 103511 (2013). https://doi.org/10.1063/1.4824686

    Article  MathSciNet  MATH  Google Scholar 

  9. Shipman, S.P., Welters, A.T.: Pathological scattering by a defect in a slow-light periodic layered medium. J. Math. Phys. 57(2), 022902 (2016). https://doi.org/10.1063/1.4941137

    Article  MathSciNet  MATH  Google Scholar 

  10. Derguzov, V.I.: The spectrum of Hamilton’s operator with periodic coefficients. Vestnik Leningrad Univ. Math. 12, 280–285 (1980)

    MATH  Google Scholar 

  11. Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Springer, Berlin, Heidelberg (1987)

    Book  MATH  Google Scholar 

  12. Krein, S.G., Utochkina, E.O.: An implicit canonical equation in Hilbert space. Ukr. Math. J. 42(3), 345–347 (1990). https://doi.org/10.1007/BF01057021

    Article  MathSciNet  MATH  Google Scholar 

  13. Atkinson, F.V.: Discrete and Continuous Boundary Problems. Academic Press, New York (1964)

    MATH  Google Scholar 

  14. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients, vol. 1. Wiley, New York (1975)

    Google Scholar 

  15. Daleckii, J.L., Krein, M.: Stability of Solutions of Differential Equations in Banach Space. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  16. Sakhnovich, L.A.: Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory: Advances and Applications. Birkhäuser, Basel (2012). https://doi.org/10.1007/978-3-0348-8713-7

    Book  Google Scholar 

  17. Arov, D.Z., Dym, H.: Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139093514

    Book  MATH  Google Scholar 

  18. Sakhnovich, A.L., Sakhnovich, L.A., Roitberg, I.Y.: Inverse Problems and Nonlinear Evolution Equations: Solutions. Darboux Matrices and Weyl–Titchmarsh Functions, De Gruyter, Berlin (2013). https://doi.org/10.1515/9783110258615

    Book  MATH  Google Scholar 

  19. Remling, C.: Spectral Theory of Canonical Systems. De Gruyter Studies in Mathematics. De Gruyter, Berlin (2018). https://doi.org/10.1515/9783110563238

    Book  Google Scholar 

  20. Behrndt, J., Hassi, S., De Snoo, H.: Boundary Value Problems, Weyl Functions, and Differential Operators. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36714-5

    Book  MATH  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, vol. 2. Academic Press Inc, San Diego (1975)

    MATH  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis, vol. 1. Academic Press Inc, San Diego (1980)

    MATH  Google Scholar 

  23. Zhang, F. (ed.): The Schur Complement and its Applications. Springer, New York (2005). https://doi.org/10.1007/b105056

    Book  MATH  Google Scholar 

  24. Hanke, M.: Linear differential-algebraic equations in spaces of integrable functions. J. Differ. Equ. 79(1), 14–30 (1989). https://doi.org/10.1016/0022-0396(89)90111-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhuk, S.M.: Closedness and normal solvability of an operator generated by a degenerate linear differential equation with variable coefficients. Nonlinear Oscillations 10(4), 469–486 (2007). https://doi.org/10.1007/s11072-008-0005-9

    Article  MathSciNet  MATH  Google Scholar 

  26. März, R.: Differential-algebraic equations from a functional-analytic viewpoint: a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations II, pp. 163–285. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11050-9_4

    Chapter  MATH  Google Scholar 

  27. Hanke, M., März, R.: Basic characteristics of differential-algebraic operators. In: Reis, T., Grundel, S., Schöps, S. (eds.) Progress in Differential-Algebraic Equations II, pp. 39–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53905-4_2

    Chapter  MATH  Google Scholar 

  28. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1975)

    MATH  Google Scholar 

  29. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media. Course of theoretical physics, vol. 8. Pergamon Press, Oxford (1984)

    Google Scholar 

  30. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  31. Lindell, I.V., Sihvola, A.H., Puska, P., Ruotanen, L.H.: Conditions for the parameter dyadics of lossless bianisotropic media. Microwav. Opt. Technol. Lett. 8(5), 268–272 (1995). https://doi.org/10.1002/mop.4650080515

    Article  Google Scholar 

  32. Welters, A., Avniel, Y., Johnson, S.G.: Speed-of-light limitations in passive linear media. Phys. Rev. A 90, 023847 (2014). https://doi.org/10.1103/PhysRevA.90.023847

    Article  Google Scholar 

  33. Berreman, D.W.: Optics in stratified and anisotropic media: 4\(\times \)4-matrix formulation. J. Opt. Soc. Am. 62(4), 502–510 (1972). https://doi.org/10.1364/JOSA.62.000502

    Article  Google Scholar 

  34. Abdulhalim, I.: Analytic propagation matrix method for linear optics of arbitrary biaxial layered media. J. Opt. A: Pure Appl. Opt. 1(5), 646 (1999). https://doi.org/10.1088/1464-4258/1/5/311

    Article  Google Scholar 

  35. Abdulhalim, I.: Analytic propagation matrix method for anisotropic magneto-optic layered media. J. Opt. A: Pure Appl. Opt. 2(6), 557 (2000). https://doi.org/10.1088/1464-4258/2/6/310

    Article  Google Scholar 

  36. Ning, J., Tan, E.L.: Generalized eigenproblem of hybrid matrix for Bloch-Floquet waves in one-dimensional photonic crystals. J. Opt. Soc. Am. B 26(4), 676–683 (2009). https://doi.org/10.1364/JOSAB.26.000676

    Article  MathSciNet  Google Scholar 

  37. Liu, Y., Guenneau, S., Gralak, B.: Causality and passivity properties of effective parameters of electromagnetic multilayered structures. Phys. Rev. B 88, 165104 (2013). https://doi.org/10.1103/PhysRevB.88.165104

    Article  Google Scholar 

  38. Liu, Y., Guenneau, S., Gralak, B.: Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers. Proc. R. Soc. A. 469, 20130240 (2013). https://doi.org/10.1098/rspa.2013.0240

    Article  MathSciNet  MATH  Google Scholar 

  39. Yeh, P., Yariv, A., Hong, C.-S.: Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67(4), 423–438 (1977). https://doi.org/10.1364/JOSA.67.000423

    Article  Google Scholar 

  40. Yeh, P.: Electromagnetic propagation in birefringent layered media. J. Opt. Soc. Am. 69(5), 742–756 (1979). https://doi.org/10.1364/JOSA.69.000742

    Article  MathSciNet  Google Scholar 

  41. Yeh, P.: Optical Waves in Layered Media. Wiley Series in Pure and Applied Optics, Wiley, New York (2005)

    Google Scholar 

  42. Cassier, M., Welters, A., Milton, G.W.: Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell’s equations. In: Milton, G.W. (ed.) Extending the Theory of Composites to Other Areas of Science, pp. 95–121. Milton-Patton Publishers, Salt Lake City (2016)

    Google Scholar 

  43. Cortes Garcia, I., Schöps, S., De Gersem, H., Baumanns, S.: Systems of differential algebraic equations in computational electromagnetics. In: Campbell, S., Ilchmann, A., Mehrmann, V., Reis, T. (eds.) Applications of Differential-Algebraic Equations: Examples and Benchmarks, pp. 123–169. Springer, Cham (2019). https://doi.org/10.1007/11221_2018_8

    Chapter  MATH  Google Scholar 

  44. Riaza, R.: Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. World Scientific, Hackensack (2008). https://doi.org/10.1142/6746

    Book  MATH  Google Scholar 

  45. Zettl, A.: Sturm–Liouville Theory. Mathematical Surveys and Monographs, vol. 121. American Mathematical Society, Providence (2005)

    Google Scholar 

  46. Sebestyén, Z., Tarcsay, Z.: On the adjoint of Hilbert space operators. Linear and Multilinear Algebra 67(3), 625–645 (2019). https://doi.org/10.1080/03081087.2018.1430120

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fritz Gesztesy, Anthony Stefan, and the anonymous reviewers for their suggestions and feedback on our original manuscript that helped improve it.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally on this paper.

Corresponding author

Correspondence to Aaron Welters.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is based in part on the Ph.D. dissertation of the first author Bader Alshammari.

Appendix A: Notation and auxiliary theorems

Appendix A: Notation and auxiliary theorems

For any \(z\in {\mathbb {C}}\), its complex conjugate and norm are \({\overline{z}}\) and \(\vert z \vert =({\overline{z}}z)^{1/2},\) respectively. For any interval \(I\subseteq {\mathbb {R}}\), the complex vector space of Lebesgue measurable functions (with equality in the sense of equal a.e. on I) is denoted by \({\mathcal {M}}(I)\). For each \(p\in [1,\infty ]\), the subspace \(L^p(I)\) of \({\mathcal {M}}(I)\), defined by

$$\begin{aligned} L^p(I)&=\left\{ f\in {\mathcal {M}}(I):\int _{I}\vert f(t)\vert ^p dt<\infty \right\} ,\text { if } p\not =\infty ,\\ L^{\infty }(I)&=\left\{ f\in {\mathcal {M}}(I):\text {ess}\,\text {sup}_{t\in I}\vert f(t)\vert <\infty \right\} \end{aligned}$$

is a Banach space with norm

$$\begin{aligned} f\in L^p(I),\; \Vert f\Vert _p= \left\{ \begin{array}{cc} \left( \int _{I}\vert f(t)\vert ^p dt \right) ^{1/p}, &{} \text { if } p\not =\infty , \\ \text {ess}\,\text {sup}_{t\in I}\vert f(t)\vert , &{} \text { if } p=\infty \end{array} \right. \end{aligned}$$

and, in the case \(p=2\), is a Hilbert space with inner product

$$\begin{aligned} \langle f,g \rangle _2=\int _{I}\overline{f(t)}g(t) dt,\;\;f,g\in L^2(I). \end{aligned}$$

For any compact interval \(I=[a,b]\), we denote the Banach space of all complex-valued absolutely continuous functions on the interval I by AC(I) with norm

$$\begin{aligned} \Vert f\Vert _{AC(I)} = \vert f(a)\vert +\int _{I}\left| \frac{df}{dt}(\tau )\right| d\tau ,\;\;f\in AC(I). \end{aligned}$$

For any interval I, the subspace \(L_{loc}^p(I)\) of \({\mathcal {M}}(I)\) and the complex vector space \(AC_{loc}(I)\) are defined by

$$\begin{aligned} L_{loc}^p(I)=\{f\in {\mathcal {M}}(I):f\in L^p([a,b]),\text { for every compact interval }[a,b]\subseteq I\},\\ AC_{loc}(I)=\{f:I\rightarrow {\mathbb {C}}\;\vert \;f\in AC([a,b]),\text { for every compact interval }[a,b]\subseteq I\}, \end{aligned}$$

respectively. The subspace \(W^{1,p}(I)\) of \(L^p(I)\), defined by

$$\begin{aligned} W^{1,p}(I)=\left\{ f\in L^p(I):f\in AC_{loc}(I), \frac{df}{dt}\in L^p(I)\right\} , \end{aligned}$$

is a Banach space with norm

$$\begin{aligned} \Vert f\Vert _{1,p}=\Vert f\Vert _p+\left\| \frac{df}{dt}\right\| _p,\;\;f\in W^{1,p}(I). \end{aligned}$$

The subspace \(W^{1,p}_{loc}(I)\) of \(L^p_{loc}(I)\) is defined by

$$\begin{aligned} W^{1,p}_{loc}(I)=\{f\in {\mathcal {M}}(I):f\in W^{1,p}([a,b]),\text { for every compact interval }[a,b]\subseteq I\}. \end{aligned}$$

If \(f\in W_{loc}^{1,p}(I)\) then there is a unique \(g\in AC_{loc}(I)\) such that \(f(t)=g(t)\) for a.e. \(t\in I\), and as such, we will always use this representative of f when we evaluate f at a point, i.e., for each \(t_0\in I\) will define \(f(t_0):=g(t_0)\). Similarly for \(f\in W^{1,p}(I)\).

Let \(m,n\in {\mathbb {N}}\), I an interval, \(p\in [1,\infty ]\), and

$$\begin{aligned} {\mathcal {V}}\in \{{\mathbb {C}},\;{\mathcal {M}}(I),\; L_{loc}^p(I),\; W^{1,p}_{loc}(I),\; AC_{loc}(I)\}. \end{aligned}$$

We denote the set of all \(n\times m\) matrices with entries in \({\mathcal {V}}\) by \(M_{n,m}({\mathcal {V}})\), and define

$$\begin{aligned} {\mathcal {V}}^n=M_{n,1}({\mathcal {V}}),\;\;M_{n}({\mathcal {V}})=M_{n,n}({\mathcal {V}}) \end{aligned}$$

and identify \({\mathcal {V}}\) with \({\mathcal {V}}^1.\) If \({\mathcal {V}}\) is a Banach space (Hilbert space) with norm \(\Vert \cdot \Vert _{{\mathcal {V}}}\) then \(M_{n,m}({\mathcal {V}})\) will denote the Banach space (Hilbert space) with norm

$$\begin{aligned} \Vert [a_{ij}]\Vert =\left( \sum _{i=1}^n\sum _{j=1}^m\Vert a_{ij}\Vert _{{\mathcal {V}}}^2\right) ^{1/2},\;\;[a_{ij}]\in M_{n,m}({\mathcal {V}}). \end{aligned}$$

In particular, for the Hilbert spaces \({\mathbb {C}}^n\) and \((L^2(I))^n\), their inner products \(\langle \cdot , \cdot \rangle \) and \(\langle \cdot ,\cdot \rangle _2\), respectively, are defined as

$$\begin{aligned}{} & {} \langle x, y \rangle =x^*y,\;\;x,y\in {\mathbb {C}}^n,\\{} & {} \langle f,g\rangle _2=\int _I\langle f(t),g(t)\rangle dt,\;\;f,g\in (L^2(I))^n, \end{aligned}$$

where \(*\) denotes conjugate-transpose.

If \({\mathcal {V}}\) is a functional space in which integration \(\int _{U}(\cdot )\; dt\) over an interval \(U\subseteq I\) or differentiation \(\frac{d}{dt}\) (either in classical or weak sense) is well-defined then for any \([a_{ij}]\in M_{n,m}({\mathcal {V}})\) we define, respectively,

$$\begin{aligned} \int _{U}[a_{ij}](t)dt=\left[ \int _{U}a_{ij}(t)dt\right] ,\;\; \frac{d[a_{ij}]}{dt}=\left[ \frac{da_{ij}}{dt}\right] . \end{aligned}$$

We need the following from [45, Theorem 1.2.1], [46, Theorem 3.2] (resp.):

Theorem 36

Let I be any interval and \(m,n\in {\mathbb {N}}\). If

$$\begin{aligned} A\in M_n(L^1_{loc}(I)),\;\;F\in M_{n,m}(L^1_{loc}(I)) \end{aligned}$$
(A1)

then every initial-value problem (IVP)

$$\begin{aligned} \frac{dX}{dt}+AX=F,\;\;X(t_0)=C,\;\;t_0\in I,\;\;C\in M_{n,m}({\mathbb {C}}) \end{aligned}$$

on I, has a unique solution

$$\begin{aligned} X\in M_{n,m}(W^{1,1}_{loc}(I)). \end{aligned}$$
(A2)

Similarly, in the case in which the interval I is bounded, the statement is true if the “loc" is dropped in the hypotheses (A1) and in the conclusion (A2).

Theorem 37

If HK are Hilbert spaces with inner products \(\langle \cdot , \cdot \rangle _H\), \(\langle \cdot , \cdot \rangle _K\), respectively, D(A) and D(B) are subspaces of H and K, respectively, and \(A:D(A)\rightarrow K\), \(B:D(B)\rightarrow H\) are linear operators satisfying

$$\begin{aligned} \langle Ax, y \rangle _K=\langle x, By\rangle _H,\;\;\text {for all }x\in D(A), y\in D(B),\\ \ker A +{\text {ran}}B=H,\;\ker B +{\text {ran}}A=K, \end{aligned}$$

then A and B are densely defined closed operators with closed ranges and are adjoints of each other, i.e., \(A^*=B,\;\;B^*=A.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshammari, B., Welters, A. On the spectral theory of linear differential-algebraic equations with periodic coefficients. Anal.Math.Phys. 13, 94 (2023). https://doi.org/10.1007/s13324-023-00856-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00856-0

Keywords

Mathematics Subject Classification

Navigation