Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 27, 2023

A doubly mononuclear cobalt(II) complex constructed with azide anions and a new coordination mode of the 2-(2-pyridylmethylamino) ethanesulfonic acid ligands: structure, conformation comparison and Hirshfeld surface analysis

  • Shu-Hui Chen EMAIL logo , Hai-Tao Song and Xia Xu

Abstract

A doubly mononuclear cobalt(II) complex [Co(Hpmt)2(N3)2]2 (1) (Hpmt = 2-(2-pyridylmethylamino)ethanesulfonic acid; N3 = azide anion) has been synthesized and structurally characterized. Single-crystal X-ray diffraction analysis showed that 1 has crystallized in orthorhombic crystal system, Cmc21 space group. In the two independent and identical complexes, the cobalt(II) centers are both hexa-coordinated in distorted CoN6 octahedrons. The reduced Schiff base ligand Hpmt displayed a new coordination mode of bidentate chelate (κ 2-N,N′). The careful comparisons between Hpmt upon coordination and as free acid form demonstrated that the conformation flexibility might be responsible for its multiple coordination modes. The N–H⋯O and C–H⋯N hydrogen bonds constructed the 3D network, and this mainly agreed with the Hirshfeld surface analysis results.


Corresponding author: Shu-Hui Chen, Xinxiang Vocational and Technical College, Xinxiang, Henan Province, 473000, P.R. China; E-mail: .

Funding source: This work was supported by the private expense of all authors

Supplementary material

The CCDC number 612370 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

  1. Research ethics: All authors will strictly follow the research ethics and have no plagiarism, tampering and other academic misconducts.

  2. Author contributions: S-HC Methodology, Software, Writing - review & editing. H-TS Data curation, Writing - original draft. XX Formal analysis.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: This work was supported by the private expense of all authors.

  5. Data availability: Not applicable.

References

1. Arunadevi, A., Raman, N. Biological response of Schiff base metal complexes incorporating amino acids – a short review. J. Coord. Chem. 2020, 73, 2095–2116; https://doi.org/10.1080/00958972.2020.1824293.Search in Google Scholar

2. Osmankovic, I., Turkusic, E., Zahirovic, A., Kralj, M., Uzelac, L., Kahrovic, E. CT DNA, BSA and antiproliferative activity of Ru(II) bipyridine complexes containing Schiff bases derived from amino acids. Croat. Chem. Acta 2022, 94, 148–157; https://doi.org/10.5562/cca3872.Search in Google Scholar

3. Yorur-Goreci, C., Altas-Puntar, N., Toraman, A., Demirhan, N. Synthesis, spectral and thermal characterization, biological activity of a new amino acide ester containing substituted salicylaldimine Schiff base ligand and its Ru(II)bipyridyl complex. Main Group Chem. 2021, 20, 193–202; https://doi.org/10.3233/mgc-210032.Search in Google Scholar

4. Pahontu, E., Ilies, D. C., Shova, S., Paraschivescu, C., Badea, M., Gulea, A., Rosu, T. Synthesis, characterization, crystal structure and antimicrobial activity of copper(II) complexes with the Schiff base derived from 2-hydroxy-4-methoxybenzaldehyde. Molecules 2015, 20, 5771–5792; https://doi.org/10.3390/molecules20045771.Search in Google Scholar PubMed PubMed Central

5. Youssef, N. S., El Zahany, E. A., Ali, M. M. Synthesis, spectral, characterization, and anticancer activity of some binary and mixed ligand complexes of 4-methyl-2-pentanone thiosemicarbazone and some amino acids. Phosphorus Sulfur 2010, 185, 2171–2181; https://doi.org/10.1080/10426500903241739.Search in Google Scholar

6. Jiang, Y. M., Li, J. M., Xie, F. Q., Wang, Y. F. Synthesis and crystal structure of an azide bridged binuclear zinc(II) dimer containing taurine Schiff base [Zn2(C8H9N2O3S)2·(N3)2·(H2O)2]2·2H2O. Chinese J. Struct. Chem. 2006, 25, 767–770.Search in Google Scholar

7. Qin, X. Y., Zhang, S. H., Jiang, Y. M., Liu, J. C., Qin, J. H. Syntheses, crystal structures and antibacterial activities of [Cu2(C11H11NO5S)2(H2O)4]·5H2O and [Ni2(C11H11NO5S)2(H2O)4]·2H2O. J. Coord. Chem. 2009, 62, 427–439; https://doi.org/10.1080/00958970802298394.Search in Google Scholar

8. Li, J. M., Jiang, Y. M., Li, C. Z., Zhang, S. H. Triaqua[2-(2-pyridylmethyleneamino) ethanesulfonato-κ3N,N’,O]nickel(II) perchlorate monohydrate. Acta Crystallogr. 2007, E63, m447–m449; https://doi.org/10.1107/s1600536806055929.Search in Google Scholar

9. Zeng, J. L., Yu, S. B., Jiang, Y. M., Sun, L. X., Cao, Z., Yang, D. W. Synthesis and crystal structure of [Ni(L)(Phen)(H2O)]·3.75H2O. J. Chem. Crystallogr. 2010, 40, 761–764; https://doi.org/10.1007/s10870-010-9733-7.Search in Google Scholar

10. Qin, X. Y., Zeng, J. L., Zhang, S. H., Jiang, Y. M. Synthesis and crystal structure of Schiff base compound [Zn(C10H9NO5S)(C12H8N2)(H2O)]·4.25H2O. Synth. React. Inorg. Met. 2012, 42, 915–919.10.1080/15533174.2011.618476Search in Google Scholar

11. Casella, L., Gullotti, M. Coordination modes of histidine. 6. Transamination in the 2-formylpyridine-amino acid-metal ion systems. Stereochemistry of zinc(II) and copper(II) complexes of N-(2-pyridylmethylidene)amino acids. Inorg. Chem. 1983, 22, 2259–2266; https://doi.org/10.1021/ic00158a008.Search in Google Scholar

12. Wagner, M. R., Walker, F. A. Spectroscopic study of 1:1 copper(II) complexes with Schiff base ligands derived from salicylaldehyde and L-histidine and its analogs. Inorg. Chem. 1983, 22, 3021–3028; https://doi.org/10.1021/ic00163a009.Search in Google Scholar

13. Li, J. X., Jiang, Y. M., Li, H. Y. Bis[2-(2-pyridylmethylamino)ethanesulfonato-κ3N,N’,O] cobalt(II). Acta Crystallogr. 2006, E62, m2984–m2986; https://doi.org/10.1107/s1600536806042267.Search in Google Scholar

14. Li, J. X., Jiang, Y. M., Chen, M. J. Bridging chlorides and hydroxides: syntheses and crystal structures of binuclear and tetranuclear NiII complexes derived from a reduced Schiff-base ligand 2-(2-pyridylmethylamino)ethanesulfonic acid. J. Coord. Chem. 2008, 61, 1765–1773; https://doi.org/10.1080/00958970701744274.Search in Google Scholar

15. Li, J. X., Jiang, Y. M., Lian, B. R. Syntheses and crystal structures of two CuII Coordination isomers [Cu(pmt)2]·4H2O (1) and {[Cu(pmt)2]·2H2O}n (2). J. Chem. Crystallogr. 2008, 38, 711–715; https://doi.org/10.1007/s10870-008-9365-3.Search in Google Scholar

16. Du, Z. X., Li, J. X. Crystal structure of catena-poly{[chloromercury(II)]-μ-[2-(2-pyridyl methylamino)ethanesulfonato-κ4N,N’,O:O’]}, [Hg(C8H11N2O3S)(Cl)]n. Z. Kristallogr. – New Cryst. Struct. 2008, 223, 211–212; https://doi.org/10.1524/ncrs.2008.0088.Search in Google Scholar

17. Li, J. X., Jiang, Y. M., Wang, J. G. Poly[μ-azido-κ2N1:N3-μ-2-(2-pyridylmethylamino) ethanesulfonato-κ4N,N’,O:O’-copper(II)]. Acta Crystallogr. 2007, E63, m213–m215; https://doi.org/10.1107/s1600536806053475.Search in Google Scholar

18. Li, J. X., Jiang, Y. M., Wang, J. G. Catena-poly[[(thiocyanato-κN)copper(II)]-[2-(2-pyridyl methylamino)ethanesulfonato-κ5N,N’,O:O’:O’’]]. Acta Crystallogr. 2007, E63, m601–m603.10.1107/S1600536807003303Search in Google Scholar

19. Leong, W. L., Vittal, J. J. Synthesis, characterization and structures of copper(II) complexes containing carboxylate and sulfonate groups. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 557–566; https://doi.org/10.1007/s10847-011-0015-6.Search in Google Scholar

20. Bruker. Apex-II CCD Single Crystal X-Ray Diffractometer; Bruker AXS Corporation: Germany, 2004.Search in Google Scholar

21. Sheldrick, G. M. Sadabs, Program for Absorption Correction of the Area Detector Data; University of Göttingen: Germany, 1996.Search in Google Scholar

22. Sheldrick, G. M. Shelxs97, Program for Crystal Structure Solution; University of Göttingen: Germany, 1997.Search in Google Scholar

23. Sheldrick, G. M. Shelxl97, Program for Crystal Structure Refinement; University of Göttingen: Germany, 1997.Search in Google Scholar

24. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D., Spackman, M. A. Crystal Explorer 2.0; University of Western Australia: Perth, Australia, 2007.Search in Google Scholar

25. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., Taylor, R. J. J. Chem. Soc. Perkin Trans. 1987, 2, S1–S19; https://doi.org/10.1039/p298700000s1.Search in Google Scholar

26. McKinnon, J. J., Spackman, M. A., Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. 2004, B60, 627–668; https://doi.org/10.1107/s0108768104020300.Search in Google Scholar

27. Anzaldo-Olivares, B., Arroyo, M., Ramírez-Monroy, A., Bernès, S. Tris(1H-benzimidazol-2-ylmethyl)amine methanol trisolvate. IUCrData 2020, 5, x200281; https://doi.org/10.1107/s2414314620002813.Search in Google Scholar

28. Stapf, M., Seichtera, W., Mazika, M. Crystal structures of monohydrate and methanol solvate compounds of {1-[(3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-tri ethylbenzyl)amino]cyclopentyl}methanol. Acta Crystallogr. 2020, E76, 1679–1683; https://doi.org/10.1107/s2056989020012554.Search in Google Scholar PubMed PubMed Central

29. Velázquez-Carmona, M. Á., Bernès, S., Ríos-Merino, F. J., Reyes Ortega, Y. Crystal structure of trans-N,N’-bis(3,5-di-tert-butyl-2-hydroxyphenyl)oxamide methanol monosolvate. Acta Crystallogr. 2016, E72, 918–921; https://doi.org/10.1107/s205698901600880x.Search in Google Scholar

30. Li, J. X., Ge, S., Lu, Y. J., Quan, K. Y., Wu, L. B., Wang, A. R. A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses. Z. Kristallogr. 2023, 238, 129–137; https://doi.org/10.1515/zkri-2022-0063.Search in Google Scholar

31. Li, J. X., Zhang, Y. H., Du, Z. X., Feng, X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: structural analyses, conformation alteration and magnetic properties. Inorg. Chim. Acta 2022, 530, 120697; https://doi.org/10.1016/j.ica.2021.120697.Search in Google Scholar

32. Li, J. X., Xiong, L. Y., Xu, X. J., Liu, C., Wang, Z. G. The synthesis, crystal structure and conformation analysis of triclopyr ethyl ester. Z. Kristallogr. 2022, 237, 385–391; https://doi.org/10.1515/zkri-2022-0047.Search in Google Scholar

33. Li, J. X., Du, Z. X., Zhang, L. L., Liu, D. L., Pan, Q. Y. Doubly mononuclear cocrystal and oxalato-bridged binuclear copper compounds containing flexible 2-((3,5,6-trichloropyridin-2-yl)oxy)acetate tectons: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 512, 119890; https://doi.org/10.1016/j.ica.2020.119890.Search in Google Scholar

34. Li, J. X., Du, Z. X. A binuclear cadmium(II) cluster based on π···π stacking and halogen···halogen interactions: synthesis, crystal analysis and fluorescent properties. J. Clust. Sci. 2020, 31, 507–511; https://doi.org/10.1007/s10876-019-01666-w.Search in Google Scholar

35. Li, J. X., Lu, Y. J., Quan, K. Y., Wu, L. B., Feng, X., Wang, W. Z. One-pot cocrystallization of mononuclear and 1D cobalt(II) complexes based on flexible triclopyr and 2,2′-bipyridine coligands: structural analyses conformation comparison, non-covalent interactions and magnetic properties. J. Mol. Struct. 2024, 1297, 136830; https://doi.org/10.1016/j.molstruc.2023.136830.Search in Google Scholar

36. Li, J. X., Du, Z. X., Pan, Q. Y., Zhang, L. L., Liu, D. L. The first 3,5,6-trichloropyridine-2-oxyacetate bridged manganese coordination polymer with features of π···π stacking and halogen···halogen interactions: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 509, 119677; https://doi.org/10.1016/j.ica.2020.119677.Search in Google Scholar

37. Li, J. X., Jiang, Y. M., Liao, B. L. 2-(2-Pyridylmethylammonio)ethanesulfonate dihydrate. Acta Crystallogr. 2006, E62, o5609–o5611; https://doi.org/10.1107/s1600536806047568.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0031).


Received: 2023-08-15
Accepted: 2023-11-08
Published Online: 2023-11-27
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0031/html
Scroll to top button