Skip to main content

Advertisement

Log in

Spray-dried calcium phosphate—gelatin composites and their behavior in simulated body fluid with the presence of cross-linking agent

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Calcium phosphates are a major focus in the biomedical field. However, among the various types, calcium pyrophosphate dihydrate and their integration with polymers are not investigated widely in the literature. This study aims to produce calcium phosphate including calcium pyrophosphate dihydrate and hydroxyapatite integrated with gelatin by a novel method using a spray dryer. The bioactivity of these samples in simulated body fluid is examined to assess their potential usage in the biomedical area. Spray-dried samples are analyzed by Fourier transform infrared (FTIR), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). Regarding the samples soaked in SBF, FTIR and SEM analyses are conducted. Additionally, the absorption and degradation of pellets in simulated body fluid, as well as the pH change, are determined. It is concluded that successful composites are synthesized and have potential applications in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data of this study are available from the corresponding author, T.B. upon reasonable request.

References

  1. Dorozhkin, S.V.: Calcium orthophosphates. J Mater Sci 42, 1061–1095 (2007)

    Article  CAS  Google Scholar 

  2. Kontoyannis, I.A., Karampasa, C.G.: Characterization of calcium phosphates mixtures. Vibrational Spectroscopy 64, 126–133 (2013)

    Article  Google Scholar 

  3. Chavez, G.S.C., Alge, D.L., Chu, T.M.G.: Additive concentration effects on dicalcium phosphate dihydrate cements prepared using monocalcium phosphate monohydrate and hydroxyapatite. Biomed. Mater. 6, 065007 (2011)

    Article  Google Scholar 

  4. Golovanova, A.P., Solonenko, O.A.: Hydroxyapatite–brushite mixtures: synthesis and physicochemical characterization. Russ. J. Inorg. Chem. 58(12), 1420–1427 (2013)

    Article  Google Scholar 

  5. Safronova, T.V., Putlayev, V.I., Bessonov, K.A., Ivanov, V.K.: Ceramics based on calcium pyrophosphate nanopowders. Process. Appl. Ceram. 7(1), 9–14 (2013)

    Article  CAS  Google Scholar 

  6. Halverson, P.B., Cheung, H.S., Johnson, R., Struve, J.: Clin. Orthop. Relat. Res. 162–165 (1990)

  7. Chen, K.H., Li, M.J., Cheng, W.T., Balic-Zunic, T., Lin, S.Y.: Int. J. Exp. Pathol. 90, 74–78 (2009)

    Article  CAS  Google Scholar 

  8. van Kemenade, M.J.J.M., de Bruyn, P.L.: A kinetic study of precipitation from supersaturated calcium phosphate solutions. J. Colloid Interface Sci. 118, 564–585 (1987)

    Article  Google Scholar 

  9. Changa, M.C., Koa, C.-C., Douglas, W.H.: Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24, 2853–2862 (2003)

    Article  Google Scholar 

  10. Chiu, C.-K., Ferreira, J., Luo, T.-J.M., Geng, H., Lin, F.-C., Ko, C.-C.: Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration. J. Mater. Sci. Mater. Med. 23(9), 2115–2126 (2012)

    Article  CAS  Google Scholar 

  11. Douglas, M.C., Chang, W.H.: Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. J. Mater. Sci.: Mater. Med. 18(10), 2045–2051 (2007)

    Google Scholar 

  12. Yoshida, T., Kikuchi, M., Koyama, Y., Takakuda, K.: Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges. J. Mater. Sci.: Mater. Med 21(4), 1263–1272 (2010)

    CAS  Google Scholar 

  13. Teixeira, S., Yang, L., Dijkstra, P.J., Ferraz, M.P., Monteiro, F.J.: Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. J. Mater. Sci.: Mater. Med. 21(8), 2385–2392 (2010)

    CAS  Google Scholar 

  14. Katti, D.R., Pradhan, S.M., Katti, K.S.: Directional dependence of hydroxyapatite-collagen interactions on mechanics of collagen. J. Biomech. 43(9), 1723–1730 (2010)

    Article  Google Scholar 

  15. Ji, J., Bar-On, B., Dl Wagner, H.: Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. J. Mech. Behav. Biomed. Mater. 13, 185–193 (2012)

    Article  CAS  Google Scholar 

  16. Macarini, L., Milillo, P., Mocci, A., Vinci, R., Ettorre, G.C.: Poly-L-lactic acid — hydroxyapatite (PLLA-HA) bioabsorbable interference screws for tibial graft fixation in anterior cruciate ligament (ACL) reconstruction surgery: MR evaluation of osteointegration and degradation features. Musculoskeletal Radiology/Radiologia Muscolo-Scheletrica 113(8), 1185–1197 (2008)

    CAS  Google Scholar 

  17. RPI Gelatin. Encyclopedia of Polymer Science and Technology. J.I. Kroschwitz (ed.) New York: Wiley (1985)

  18. Narbat, M.K., Hashtjin, M.S., Pazouki, M.: Fabrication of porous hydroxyapatite-gelatin scaffolds crosslinked by glutaraldehyde for bone tissue engineering. Iran. J. Biotechnol. 4(1), 54–60 (2006)

    CAS  Google Scholar 

  19. Bigi, A., Panzavolta, S., Roveri, N.: Hydroxyapatite gelatin films: a structural and mechanical characterization. Biomaterials 19, 739–744 (1988)

    Article  Google Scholar 

  20. Basargan, T., Nasun-Saygili, G.: The impact of gelatin weight ratio on hydroxyapatite-gelatin composites and their SBF behaviour. Macromol. Symposia 352(1), 8–15 (2015)

    Article  Google Scholar 

  21. Nouri-Felekori, M., Sheikh-Mehdi Mesgar, A., Mohammadi, Z.: Development of composite scaffolds in the system of gelatin−calcium phosphate whiskers/fibrous spherulites for bone tissue engineering. Ceram. Int. 41(4), 6013–6019 (2015). https://doi.org/10.1016/j.ceramint.2015.01.043. (ISSN 0272-8842)

    Article  CAS  Google Scholar 

  22. Zhang, X., Meng, S., Huang, Y., Xu, M., He, Y., Lin, H., Han, J., Chai, Y., Wei, Y., Deng, X.: Electrospun gelatin/β-TCP composite nanofibers enhance osteogenic differentiation of BMSCs and in vivo bone formation by activating Ca (2+) -sensing receptor signaling. Stem Cells Int. 2015, 507154 (2015). https://doi.org/10.1155/2015/507154

    Article  Google Scholar 

  23. Huh, J.T., Lee, J.U., Kim, W.J., Yeo, M., Kim, G.H.: Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration. Int. J. Biol. Macromol. 110, 488–496 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.030. (ISSN 0141-8130)

    Article  CAS  Google Scholar 

  24. Bohner, M., Tadier, S., van Garderen, N., de Gasparo, A., Döbelin, N., Baroud, G.: Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter. 3(2), e25103 (2013). https://doi.org/10.4161/biom.25103

    Article  Google Scholar 

  25. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907–2915 (2006)

    Article  CAS  Google Scholar 

  26. Zhang, S.: Hydroxyapatite coatings for biomedical applications. CRC Press, Boca Raton, FL (2013)

    Book  Google Scholar 

  27. LeGeros, R.Z.: Formation and transformation of calcium phosphates: relevance to vascular calcification. Zeitschrift fur Kardiologie 90(3), 116–124 (2001)

    Google Scholar 

  28. Shu, C., et al.: Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin based precipitation method. Ceram Int 33, 193–196 (2007)

    Article  Google Scholar 

  29. Sivakumar, M., Rao, K.P.: Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres. Biomaterials 23, 3175–3181 (2002)

    Article  CAS  Google Scholar 

  30. Azami, M., Moosavifar, M.J., Baheiraei, N., Moztarzadeh, F., Ai, J.: Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J. Biomed. Mater. Res. A 100A(5), 1347–1355 (2012)

    Article  CAS  Google Scholar 

  31. Berzina-Cimdina, L., Borodajenko, N.: Research of calcium phosphates using Fourier transform infrared spectroscopy. In: Theophanides, T. (ed.) Infrared Spectroscopy - Materials Science, Engineering and Technology. InTech (2012)

    Google Scholar 

  32. Figueiredo, M.M., Gameles, J.A.F., Martins, A.G.: Characterization of bone and bone-based graft materials using FTIR spectroscopy. In: Theophanides, T. (ed.) Infrared Spectroscopy - Life and Biomedical Sciences. InTech (2012)

    Google Scholar 

  33. Bohner, M., Tadier, S., van Garderen, N., de Gasparo, A., Döbelin, N., Baroud, G.: Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter 3(2), e25103 (2013)

    Article  Google Scholar 

  34. Narbat, M.K., Orang, F., Hashtjin, M.S., Goudarzi, A.: Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Iran. Biomed. J. 10(4), 215–223 (2006)

    CAS  Google Scholar 

  35. Rehman, I., Bon, W.: Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci.: Mater. Med. 8, 1–4 (1997)

    CAS  Google Scholar 

  36. Kourkoumelis, N., Tzaphlidou, M.: Spectroscopic assessment of normal cortical bone: differences in relation to bone site and sex. Sci. World J. 10, 402–412 (2010)

    Article  Google Scholar 

  37. Mohamed, K.R., Beherei, H.H., El-Rashidy, Z.M.: In vitro study of nano-hydroxyapatite/chitosan-gelatin composites for bio-applications. J. Adv. Res. 1, 1–8 (2013)

    Google Scholar 

  38. Kim, S.-K., Rajapakse, N.: Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr. Polym. 62, 357–368 (2005)

    Article  CAS  Google Scholar 

  39. Singh, A.: Hydroxyapatite, a biomaterial: its chemical synthesis, characterization and study of biocompatibility prepared from shell of garden snail, Helix aspersa. Bull. Mater. Sci. 35(6), 1031–1038v (2012)

    Article  CAS  Google Scholar 

  40. Chen, X. et al.: Gelatin/gelatin-modified nano hydroxyapatite composite scaffolds with hollow channel arrays prepared by extrusion molding for bone tissue engineering. Mater. Res. Expr. 8, 015027 (2021)

  41. Lee, J., Yun, H.S.: Effect of hydroxyapatite-containing microspheres embedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation. Int. J. Nanomed. 1(9), 4177–4189 (2014). https://doi.org/10.2147/IJN.S68143

    Article  CAS  Google Scholar 

Download references

Funding

We would like to thank Scientific Research Project Association of Istanbul Technical University for supporting this project financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugba Basargan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basargan, T., Nasun-Saygili, G. Spray-dried calcium phosphate—gelatin composites and their behavior in simulated body fluid with the presence of cross-linking agent. J Aust Ceram Soc (2023). https://doi.org/10.1007/s41779-023-00975-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41779-023-00975-8

Keywords

Navigation