Skip to main content
Log in

Cystinosis: Status of research and treatment in India and the world

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Cystinosis is an autosomally inherited rare genetic disorder in which cystine accumulates in the lysosome. The defect arises from a mutation in the lysosomal efflux pump, cystinosin (or CTNS). Despite the disease being known for more than a century, research, diagnosis, and treatment in India have been very minimal. In recent years, however, some research on cystinosis has been carried out on understanding the pathophysiology and in the development of a humanized yeast model for interrogating the CTNS protein. There has also been a greater awareness of the disease that has been facilitated by the formation of the Cystinosis Foundation of India just over a decade ago. Awareness among primary physicians is critical for early diagnosis, which in turn is critical for proper treatment. Eight different mutations have been observed in cystinosis patients in India, and the mutation spectrum seems different to what has been seen in the US and Europe. Despite these positive developments, there are immense hurdles still to be surmounted. This includes ensuring that the diagnosis is done sooner, making cysteamine more easily available, and, also for the future, to make accessible the promise of gene therapy to cystinosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. Among the six patients who received the gene therapy in phase 1/2 clinical trials, was Natalie Stack, daughter of Nancy Stack and Geoffery Stack, who have been driving the Cystinosis Research Foundation for the last 20 years, some years after their daughter was diagnosed with cystinosis. It is an example to show that a private, parent-driven foundation can have resounding achievements.

References

  • Abderhalden E 1903 Familiäre Cystindiathese. J. Biol. Chem. 38 557–561

    CAS  Google Scholar 

  • Anikster Y, Lucero C, Touchman JW, et al. 1999 Identification and detection of the common 65-kb deletion breakpoint in the nephropathic cystinosis gene (CTNS). Mol. Genet. Metab. 66 111–116

    Article  CAS  PubMed  Google Scholar 

  • Berlingerio SP, He J, De Groef L, et al. 2021 Renal and extra renal manifestations in adult zebrafish model of cystinosis. Int. J. Mol. Sci. 22 9398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertholet-Thomas A, Bacchetta J, Tasic V, et al. 2014 Nephropathic cystinosis-a gap between developing and developed nations. N. Engl. J. Med. 370 1366–1367

    Article  CAS  PubMed  Google Scholar 

  • Bertholet-Thomas A, Berthiller J, Tasic V, et al. 2017 Worldwide view of nephropathic cystinosis: results from a survey from 30 countries. BMC Nephrol. 18 210

  • Brasell EJ, Chu L, El Kares R, et al. 2019 The aminoglycoside geneticin permits translational readthrough of the CTNS W138X nonsense mutation in fibroblasts from patients with nephropathic cystinosis. Pediatr. Nephrol. 34 873–881

    Article  PubMed  Google Scholar 

  • Chadha N, Anand K, Agarwal P, et al. 2022 POS-090 Cystinosis: A rare but treatable cause of proximal renal tubular acidosis. Kidney Int. Rep. 7 S37–S38

  • Cherqui S, Kalatzis V, Trugnan G, et al. 2001 The targeting of cystinosin to the lysosomal membrane requires a tyrosine-based signal and a novel sorting motif. J. Biol. Chem. 276 13314–13321

    Article  CAS  PubMed  Google Scholar 

  • Cherqui S and Courtoy PJ 2017 The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat. Rev. Nephrol. 13 115–131

    Article  CAS  PubMed  Google Scholar 

  • Cherqui S 2021 Hematopoietic stem cell gene therapy for cystinosis: From bench-to-bedside. Cells 10 3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherqui S, Sevin C, Hamard G et al. 2002 Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol. Cell Biol. 22 7622–7632

  • Cheung PY, Harrison PT, Davidson AJ, et al. 2022 In vitro and in vivo models to study nephropathic cystinosis. Cells 11 6

    Article  CAS  Google Scholar 

  • Das G, Nanda PM, Kaur A, et al. 2021 Bartter syndrome and hypothyroidism masquerading cystinosis in a 3-year-old girl: rare manifestation of a rare disease. BMJ Case Rep. 14 e242954

    Article  PubMed  PubMed Central  Google Scholar 

  • David D, PrincieroBerlingerio S, Elmonem MA, et al. 2019 Molecular basis of cystinosis: geographic distribution, functional consequences of mutations in the CTNS gene, and potential for repair. Nephron 141 133–146

    Article  CAS  PubMed  Google Scholar 

  • Deepthi B, Krishnamurthy S, Karunakar P, et al. 2022 Atypical manifestations of infantile-onset nephropathic cystinosis: a diagnostic challenge. CEN Case Rep. 11 347–350

  • De Leo E, Elmonem MA, Berlingerio SP, et al. 2020 Cell-based phenotypic drug screening identifies luteolin as candidate therapeutic for nephropathic cystinosis. Am. J. Nephrol. 31 1522–1537

    Article  Google Scholar 

  • Deshpande AA, Ravichandran R and Bachhawat AK 2017 Molecular analysis of the CTNS gene in Indians with nephropathic cystinosis. Indian J. Pediatr. 84 240–241

    Article  PubMed  Google Scholar 

  • Deshpande AA, Shukla A and Bachhawat AK 2018 A genetic screen for investigating the human lysosomal cystine transporter Cystinosin. Sci. Rep. 8 3442

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmonem MA, Veys KR, Soliman NA, et al. 2016 Cystinosis: a review. Orphanet J. Rare Dis. 11 47

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmonem MA, Veys K, Arcolino FO, et al. 2018 Allogeneic HSCT transfers wild-type cystinosin to nonhematological epithelial cells in cystinosis: First human report. Am. J. Transplant. 18 2823–2828

    Article  CAS  PubMed  Google Scholar 

  • Emma F, Nesterova G, Langman C, et al. 2014 Nephropathic cystinosis: an international consensus document. Nephrol. Dial. Transplant. 29 iv87–iv94

  • Gahl W, Bashan N and Tietze F 1982 Cystine transport is defective in isolated leukocyte lysosomes from patients with cystinosis. Science 217 1263–1265

    Article  CAS  PubMed  Google Scholar 

  • Gahl WA, Thoene JG and Schneider JA 2002 Cystinosis. N. Engl. J. Med. 347 111–121

    Article  PubMed  Google Scholar 

  • Gaide Chevronnay HP, Janssens V, Van Der Smissen P, et al. 2015 A mouse model suggests two mechanisms for thyroid alterations in infantile cystinosis: decreased thyroglobulin synthesis due to endoplasmic reticulum stress/unfolded protein response and impaired lysosomal processing. Endocrinology 156 2349–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galarreta CI, Forbes MS, Thornhill BA, et al. 2015 The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. Am. J. Physiol. Renal Physiol. 308 F1155–F1166

    Article  CAS  PubMed  Google Scholar 

  • Goodman S, Khan M, Sharma J, et al. 2021 Deficiency of the sedoheptulose kinase (Shpk) does not alter the ability of hematopoietic stem cells to rescue cystinosis in the mouse model. Mol. Genet. Metab. 134 309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Schmiege P, Assafa TE, et al. 2022 Structure and mechanism of human cystine exporter cystinosin. Cell 185 e3718

    Article  Google Scholar 

  • Jamalpoor A, Othman A, Levtchenko EN, et al. 2021 Molecular mechanisms and treatment options of nephropathic cystinosis. Trends Mol. Med. 27 673–686

    Article  CAS  PubMed  Google Scholar 

  • Jézégou A, Llinares E, Anne C, et al. 2012 Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc. Natl. Acad. Sci. USA 109 E3434–E3443

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonas AJ, Smith ML and Schneider JA 1982 ATP-dependent lysosomal cystine efflux is defective in cystinosis. J. Biol. Chem. 257 13185–13188

    Article  CAS  PubMed  Google Scholar 

  • Kalatzis V, Cherqui S, Antignac C, et al. 2001 Cystinosin, the protein defective in cystinosis, is a H+-driven lysosomal cystine transporter. EMBO J. 20 5940–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalatzis V and Antignac C 2003 New aspects of the pathogenesis of cystinosis. Pediatr. Nephrol. 18 207–215

    Article  PubMed  Google Scholar 

  • Kanthila J, Dsa S and Bhat KG 2015 Nephropathic cystinosis presenting as renal fanconi syndrome without glycosuria. J. Clin. Diagn. Res. 9 SD05–06

  • Kiran BV, Barman H and Iyengar A 2014 Clinical profile and outcome of renal tubular disorders in children: A single center experience. Indian J. Nephrol. 24 362–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A and Bachhawat AK 2010 A futile cycle, formed between two ATP-dependant γ-glutamyl cycle enzymes, γ-glutamyl cysteine synthetase and 5-oxoprolinase: the cause of cellular ATP depletion in nephrotic cystinosis? J. Biosci. 35 21–25

    Article  CAS  PubMed  Google Scholar 

  • Levtchenko E and Monnens L 2006 Development of Fanconi syndrome during infancy in a patient with cystinosis. Acta Paediatr. 95 379–380

    Article  PubMed  Google Scholar 

  • Levtchenko E, Van Den Heuvel L, Emma F, et al. 2014 Clinical utility gene card for: cystinosis. Eur. J. Hum. Genet. 22 713–713

    Article  Google Scholar 

  • Liu B, Du H, Rutkowski R, et al. 2012 LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337 351–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal D, Bagga A, Tandon R, et al. 2015 Hirschsprung’s disease with infantile nephropathic cystinosis. J. Indian Assoc. Pediatr. Surg. 20 153

    Article  PubMed  PubMed Central  Google Scholar 

  • Naik MP, Sethi HS and Dabas S 2019 Ocular cystinosis: Rarity redefined. Indian J. Ophthalmol. 67 1158–1159

  • Omasits U, Ahrens CH, Müller S, et al. 2014 Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30 884–886

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M and Meister A 1971 Isolation of highly purified γ-glutamylcysteine synthetase from rat kidney. Biochemistry 10 372–380

    Article  CAS  PubMed  Google Scholar 

  • Park M, Helip-Wooley A and Thoene J 2002 Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells. J. Am. Soc. Nephrol. 13 2878–2887

    Article  CAS  PubMed  Google Scholar 

  • Phadke K, Kumar P, Karthik S, et al. 2004 Infantile nephropathic cystinosis. Indian J. Nephrol. 14 18–21

    Google Scholar 

  • Pisoni RL, Park GY, Velilla VQ, et al. 1995 Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes: specificity for aminoethylthiol and aminoethyl sulfide derivatives. J. Biol. Chem. 270 1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Raut S, Khandelwal P, Sinha A, et al. 2020 Infantile nephropathic cystinosis: clinical features and outcome. Asian J. Pediatr. Nephrol. 3 15

  • Ravichandran R 2016 Cystinosis a truly orphan disease -Report of the Cystinosis Foundation India. Orphanet J. Rare Dis. 3 795 1–4

    Google Scholar 

  • Rizzo C, Ribes A, Pastore A, et al. 1999 Pyroglutamic aciduria and nephropathic cystinosis. J. Inherit. Metab. Dis. 22 224

    Article  CAS  PubMed  Google Scholar 

  • Rocca CJ and Cherqui S 2019 Potential use of stem cells as a therapy for cystinosis. Pediatr. Nephrol. 34 965–973

    Article  PubMed  Google Scholar 

  • Sharma A, Gupta R, Sethi SK, et al. 2011 Giant cell transformation of podocytes: A unique histological feature associated with cystinosis. Indian J. Nephrol. 21 123–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpkins JA, Rickel KE, Madeo M, et al. 2016 Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration. Biol. Open 5 689–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan K and Jeyaraman M 2014 Cystinosis: An “eye opener.” Apollo Med. 11 43–45

    Article  Google Scholar 

  • Syres K, Harrison F, Tadlock M, et al. 2009 Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood Am. J. Hematol. 114 2542–2552

    CAS  Google Scholar 

  • Tang S, Danda S, Zoleikhaeian M, et al. 2009 An Indian boy with nephropathic cystinosis: a case report and molecular analysis of CTNS mutation. Genet. Test. Mol. 13 435–438

    Article  CAS  Google Scholar 

  • Taranta A, Palma A and Emma F 2008 Pathogenesis of cell dysfunction in nephropathic cystinosis. J. Paediatr. Child Health 18 S51–S53

    Article  Google Scholar 

  • Taub M and Cutuli F 2012 Activation of AMP kinase plays a role in the increased apoptosis in the renal proximal tubule in cystinosis. Biochem. Biophys. Res. Commun. 426 516–521

    Article  CAS  PubMed  Google Scholar 

  • Thoene JG 2007 A review of the role of enhanced apoptosis in the pathophysiology of cystinosis. Mol. Genet. Metab. 92 292–298

    Article  CAS  PubMed  Google Scholar 

  • Town M, Jean G, Cherqui S, et al. 1998 A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat. Genet. 18 319–324

    Article  CAS  PubMed  Google Scholar 

  • Wilmer MJ, van den Heuvel LP, Rodenburg RJ, et al. 2008 Mitochondrial complex V expression and activity in cystinotic fibroblasts. Pediatr. Res. 64 495–497

    Article  CAS  PubMed  Google Scholar 

  • Wilmer MJ, Emma F and Levtchenko EN 2010 The pathogenesis of cystinosis: mechanisms beyond cystine accumulation. Am. J. Physiol. Renal Physiol. 299 F905–F916

    Article  CAS  PubMed  Google Scholar 

  • Wilmer MJ, Schoeber JP, van den Heuvel LP, et al. 2011 Cystinosis: practical tools for diagnosis and treatment. Pediatr. Nephrol. 26 205–215

    Article  PubMed  Google Scholar 

  • Yadav AK and Bachhawat AK 2011 CgCYN1, a plasma membrane cystine-specific transporter of Candida glabrata with orthologues prevalent among pathogenic yeast and fungi. J. Biol. Chem. 286 19714–19723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Johnson JL, He J, et al. 2017 Cystinosin, the small GTPase Rab11, and the Rab7 effector RILP regulate intracellular trafficking of the chaperone-mediated autophagy receptor LAMP2A. J. Biol. Chem. 292 10328–10346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NV is a recipient of a CSIR Senior Research Fellowship. AKB acknowledges funding from the Cystinosis Research Foundation, USA, for part of the work carried out in his lab during 2014–2017 and currently from IISER Mohali and CEFIPRA (Project No. 6503–5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand K Bachhawat.

Additional information

Corresponding editor: Alok Bhattacharya

This article is part of the Topical Collection: The Rare Genetic Disease Research Landscape in India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashist, N., Deshpande, A.A., Kanakaraj, A. et al. Cystinosis: Status of research and treatment in India and the world. J Biosci 48, 50 (2023). https://doi.org/10.1007/s12038-023-00384-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00384-w

Keywords

Navigation